Novel Approaches in Statistical Analysis and Coupled Social-Physical Systems Modeling for Integrated and Adaptive Water Resources Management in the Face of Increasing Uncertainty

面对日益增加的不确定性,用于综合和适应性水资源管理的统计分析和耦合社会物理系统建模的新方法

基本信息

  • 批准号:
    RGPIN-2015-05554
  • 负责人:
  • 金额:
    $ 2.48万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2018
  • 资助国家:
    加拿大
  • 起止时间:
    2018-01-01 至 2019-12-31
  • 项目状态:
    已结题

项目摘要

In many parts of Canada and around the world, pressure on water resources, both in terms of water quality and quantity, from urban areas, agriculture, and industry are increasing, resulting in significant challenges in sustainable water resources management. In addition, in many regions of the world climate change will increase the frequency of extreme events (e.g., droughts and floods), which will have significant impacts on, among other things, our ecosystems, water resources, urban areas, and agricultural and food systems, which in turn will have ramifications on water and food security. The capacity of communities to mitigate against, and adapt to, such complex problems is presently constrained by many factors, including: i) a lack of water resources data in many watersheds that can help support water resources modeling and management; ii) challenges in providing highly accurate forecasts of non-linear and non-stationary water resources variables, and providing uncertainty assessments for decision makers; and iii) a lack of meaningful participation of key stakeholders in water resources modeling and management, coupled with our limited knowledge and modeling ability of the complex coupling of physical and social-economic activities in water resources systems.***To directly address these three critical issues, this research program will follow a three pronged approach to develop, test, and implement: i) Methods to improve water resources data records for modeling and management. This will involve new approaches to extend water resources records in short-gauged sites, as well as estimate water resources records in ungauged sites. ii) Methods to improve short term water resources forecasting. This will involve new approaches to address non-linearity, non-stationarity, and uncertainty assessment in water resources forecasting. iii) Methods to improve the incorporation of key stakeholders and social aspects in water resources modeling and management. This will involve a new participatory social-physical systems modeling approach to represent and couple interactions between physical and social-economic processes that govern water resources systems. This research program will facilitate the transition towards more sustainable water resources management, and will provide training of highly qualified personnel in a unique combination of state-of-the-art concepts and approaches in the fields of hydrology and integrated, collaborative, and adaptive water resources management.**
在加拿大许多地区和世界各地,来自城市、农业和工业的水资源在水质和水量方面的压力都在增加,这给可持续水资源管理带来了重大挑战。此外,在世界许多地区,气候变化将增加极端事件(如干旱和洪水)的发生频率,这将对我们的生态系统、水资源、城市地区以及农业和粮食系统等产生重大影响,进而对水和粮食安全产生影响。社区缓解和适应这类复杂问题的能力目前受到许多因素的制约,包括:(1)许多流域缺乏可帮助支持水资源建模和管理的水资源数据;(2)在为非线性和非平稳水资源变量提供高度准确的预测和为决策者提供不确定性评估方面存在挑战;以及iii)缺乏关键利益相关者对水资源建模和管理的有效参与,再加上我们对水资源系统物理和社会经济活动的复杂耦合的有限的知识和建模能力。*为了直接解决这三个关键问题,本研究计划将遵循三个方面的方法来开发、测试和实施:i)改进用于建模和管理的水资源数据记录的方法。这将涉及新的方法,以延长短期站点的水资源记录,以及估计未测量站点的水资源记录。2)改进短期水资源预测的方法。这将涉及解决水资源预测中的非线性、非平稳性和不确定性评估的新方法。三)改进将关键利益攸关方和社会方面纳入水资源建模和管理的方法。这将涉及一种新的参与性社会-物理系统建模方法,以表示和耦合管理水资源系统的物理和社会-经济过程之间的相互作用。这一研究方案将促进向更可持续的水资源管理过渡,并将在水文学领域的最新概念和方法与综合、协作和适应性水资源管理的独特组合方面提供高素质人员的培训。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Adamowski, Jan其他文献

Modeling the Relationship between Catchment Attributes and In-stream Water Quality
  • DOI:
    10.1007/s11269-015-1103-y
  • 发表时间:
    2015-11-01
  • 期刊:
  • 影响因子:
    4.3
  • 作者:
    Fatehi, Iman;Amiri, Bahman Jabbarian;Adamowski, Jan
  • 通讯作者:
    Adamowski, Jan
Bottom outlet dam flow: physical and numerical modelling
A wavelet neural network conjunction model for groundwater level forecasting
  • DOI:
    10.1016/j.jhydrol.2011.06.013
  • 发表时间:
    2011-09-15
  • 期刊:
  • 影响因子:
    6.4
  • 作者:
    Adamowski, Jan;Chan, Hiu Fung
  • 通讯作者:
    Chan, Hiu Fung
Using extreme learning machines for short-term urban water demand forecasting
  • DOI:
    10.1080/1573062x.2016.1236133
  • 发表时间:
    2017-01-01
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Mouatadid, Soukayna;Adamowski, Jan
  • 通讯作者:
    Adamowski, Jan
Predicting Triaxial Compressive Strength and Young's Modulus of Frozen Sand Using Artificial Intelligence Methods
  • DOI:
    10.1061/(asce)cr.1943-5495.0000188
  • 发表时间:
    2019-09-01
  • 期刊:
  • 影响因子:
    2
  • 作者:
    Esmaeili-Falak, Mahzad;Katebi, Hooshang;Adamowski, Jan
  • 通讯作者:
    Adamowski, Jan

Adamowski, Jan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Adamowski, Jan', 18)}}的其他基金

Development of novel approaches to improve water resources data records, deep learning based forecasting, and participatory socio-hydrological systems modeling for integrated and adaptive water resources management
开发新方法来改进水资源数据记录、基于深度学习的预测以及用于综合和适应性水资源管理的参与式社会水文系统建模
  • 批准号:
    RGPIN-2020-05325
  • 财政年份:
    2022
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Discovery Grants Program - Individual
Development of novel approaches to improve water resources data records, deep learning based forecasting, and participatory socio-hydrological systems modeling for integrated and adaptive water resources management
开发新方法来改进水资源数据记录、基于深度学习的预测以及用于综合和适应性水资源管理的参与式社会水文系统建模
  • 批准号:
    RGPIN-2020-05325
  • 财政年份:
    2021
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Discovery Grants Program - Individual
Development of novel approaches to improve water resources data records, deep learning based forecasting, and participatory socio-hydrological systems modeling for integrated and adaptive water resources management
开发新方法来改进水资源数据记录、基于深度学习的预测以及用于综合和适应性水资源管理的参与式社会水文系统建模
  • 批准号:
    RGPIN-2020-05325
  • 财政年份:
    2020
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Discovery Grants Program - Individual
Novel Approaches in Statistical Analysis and Coupled Social-Physical Systems Modeling for Integrated and Adaptive Water Resources Management in the Face of Increasing Uncertainty
面对日益增加的不确定性,用于综合和适应性水资源管理的统计分析和耦合社会物理系统建模的新方法
  • 批准号:
    RGPIN-2015-05554
  • 财政年份:
    2019
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Discovery Grants Program - Individual
Novel Approaches in Statistical Analysis and Coupled Social-Physical Systems Modeling for Integrated and Adaptive Water Resources Management in the Face of Increasing Uncertainty
面对日益增加的不确定性,用于综合和适应性水资源管理的统计分析和耦合社会物理系统建模的新方法
  • 批准号:
    477886-2015
  • 财政年份:
    2017
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Novel Approaches in Statistical Analysis and Coupled Social-Physical Systems Modeling for Integrated and Adaptive Water Resources Management in the Face of Increasing Uncertainty
面对日益增加的不确定性,用于综合和适应性水资源管理的统计分析和耦合社会物理系统建模的新方法
  • 批准号:
    RGPIN-2015-05554
  • 财政年份:
    2017
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Discovery Grants Program - Individual
A new participatory rainwater management framework for urban areas using non-structural measures.
使用非结构性措施的城市地区新的参与式雨水管理框架。
  • 批准号:
    518069-2017
  • 财政年份:
    2017
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Engage Grants Program
Assessing the impact of climate change on Montreal's precipitation characteristics
评估气候变化对蒙特利尔降水特征的影响
  • 批准号:
    505755-2016
  • 财政年份:
    2016
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Engage Grants Program
Novel Approaches in Statistical Analysis and Coupled Social-Physical Systems Modeling for Integrated and Adaptive Water Resources Management in the Face of Increasing Uncertainty
面对日益增加的不确定性,用于综合和适应性水资源管理的统计分析和耦合社会物理系统建模的新方法
  • 批准号:
    RGPIN-2015-05554
  • 财政年份:
    2016
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Discovery Grants Program - Individual
Development of State-of-the-Art Artificial Intelligence River Flood Forecasting Models
开发最先进的人工智能河流洪水预报模型
  • 批准号:
    477864-2015
  • 财政年份:
    2015
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Engage Grants Program

相似国自然基金

Lagrangian origin of geometric approaches to scattering amplitudes
  • 批准号:
    24ZR1450600
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

Novel statistical approaches for basket trials in ageing-related diseases
衰老相关疾病篮子试验的新统计方法
  • 批准号:
    2518263
  • 财政年份:
    2021
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Studentship
Applying novel statistical approaches to develop a decision framework for hybrid randomized controlled trial designs which combine internal control arms with patients' data from real-world data source
应用新颖的统计方法来开发混合随机对照试验设计的决策框架,该设计将内部对照组与来自真实世界数据源的患者数据相结合
  • 批准号:
    10449112
  • 财政年份:
    2020
  • 资助金额:
    $ 2.48万
  • 项目类别:
Applying novel statistical approaches to develop a decision framework for hybrid randomized controlled trial designs which combine internal control arms with patients' data from real-world data source
应用新颖的统计方法来开发混合随机对照试验设计的决策框架,该设计将内部对照组与来自真实世界数据源的患者数据相结合
  • 批准号:
    10250391
  • 财政年份:
    2020
  • 资助金额:
    $ 2.48万
  • 项目类别:
Applying novel statistical approaches to develop a decision framework for hybrid randomized controlled trial designs which combine internal control arms with patients' data from real-world data source
应用新颖的统计方法来开发混合随机对照试验设计的决策框架,该设计将内部对照组与来自真实世界数据源的患者数据相结合
  • 批准号:
    10186428
  • 财政年份:
    2020
  • 资助金额:
    $ 2.48万
  • 项目类别:
Novel Approaches in Statistical Analysis and Coupled Social-Physical Systems Modeling for Integrated and Adaptive Water Resources Management in the Face of Increasing Uncertainty
面对日益增加的不确定性,用于综合和适应性水资源管理的统计分析和耦合社会物理系统建模的新方法
  • 批准号:
    RGPIN-2015-05554
  • 财政年份:
    2019
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Discovery Grants Program - Individual
Collaborative Research: Novel Computational and Statistical Approaches to Prediction and Estimation
协作研究:预测和估计的新颖计算和统计方法
  • 批准号:
    1841187
  • 财政年份:
    2018
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Continuing Grant
Improvement of diagnostic rate of mitochondrial cardiomyopathy by novel statistical approaches
通过新的统计方法提高线粒体心肌病的诊断率
  • 批准号:
    18K15863
  • 财政年份:
    2018
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Novel Approaches in Statistical Analysis and Coupled Social-Physical Systems Modeling for Integrated and Adaptive Water Resources Management in the Face of Increasing Uncertainty
面对日益增加的不确定性,用于综合和适应性水资源管理的统计分析和耦合社会物理系统建模的新方法
  • 批准号:
    477886-2015
  • 财政年份:
    2017
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
III: Small: Novel Statistical Data Analysis Approaches for Mining Human Genetics Datasets
III:小型:挖掘人类遗传学数据集的新颖统计数据分析方法
  • 批准号:
    1715202
  • 财政年份:
    2017
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Standard Grant
Novel Approaches in Statistical Analysis and Coupled Social-Physical Systems Modeling for Integrated and Adaptive Water Resources Management in the Face of Increasing Uncertainty
面对日益增加的不确定性,用于综合和适应性水资源管理的统计分析和耦合社会物理系统建模的新方法
  • 批准号:
    RGPIN-2015-05554
  • 财政年份:
    2017
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了