Laser Control of Molecular Electronics-Femto to Attosecond Science
分子电子学的激光控制——飞秒到阿秒科学
基本信息
- 批准号:RGPIN-2014-04714
- 负责人:
- 金额:$ 4.95万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2018
- 资助国家:加拿大
- 起止时间:2018-01-01 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Advances in modern laser technology allow for the generation of phase-controlled intense (few cycle) light pulses with which one can explore light-matter interactions in the nonlinear nonperturbative regime. The applications of this new technology for the development of a new science, Molecular Photonics, and the laser control of electronics in matter, requires advanced modelling and simulations using advanced high level parallel numerical algorithms. An important "spin-off" of this research, mainly theoretical and only recently experimental is the development of molecular high order harmonic generation, MHOHG as the main source of current attosecond (1 asec=10**-18s) pulses, from linear to even circular (as proposed recently by us) polarization. Attosecond pulses are the preferred tools for imaging, visualizing and controlling electrons on their natural timescale, the attosecond (the electron orbit period in the H atom is 152 asecs). Nuclear motion such as proton motion, the fastest atom in chemistry, biology, and materials has its own time scale of few femtoseconds (fs) which adds another timescale to the control of matter at the atomic and molecular level.*The proposal will focus on developing theories, numerical methods and simple practical models of laser-molecule interactions in the nonlinear nonperturbative regime. Highly efficient parallel numerical algorithms will be developed for High dimension partial differential equations, PDE's such as Time Dependent Schroedinger Equations, TDSE's, Time-Dependent Dirac Equation, TDDE's for relativistic effects, coupled to Maxwell equations for propagation effects in order to explore applications of new ultrafast intense laser technologies to the new field of Molecular Photonics. High level simulations on Compute Canada's supercomputing facilities such as the 40 000 core machine at U de S will serve to invent and refine simple models of ultrafast laser control of matter for use by experimentalists.*The research in this proposal will serve to catalyze novel applications of ultrafast intense laser science in a wide range of fields such as nanotechnology and life sciences, based on the new scientific direction - the ultimate visualization and control of the quantum nature of the electron. High performance supercomputer numerical simulations supported by the development of useful analytical models will be performed for the three fundamental PDE's of ultrafast intense Molecular Photonics: TDSE's, TDDE's, coupled to Maxwell's equations. The simulations and models will be used to explore new applications of the following novel laser induced physical processes: i) LIED - Laser Induced Electron Diffraction; ii) LIET - Laser Induced Electron Transfer; iii) PEHG - Photo Electron Holography; iv) Coherent Electron Wave Packets - CEWP's, and Currents; v) Circular Polarization Attosecond Laser-Magnetic Pulses; vi) Super Intense Lasers and Relativity. Micro-macro nonlinear optics is developed further through Maxwell's equations allowing for exploration of new nonlinear macroscopic phenomena such as laser solitons, filamentation, attosecond magnetic pulses and relativistic phenomena in the nonlinear nonperturbative regime of laser-matter interaction.
现代激光技术的进步可以产生相控强(少周期)光脉冲,人们可以用它来探索非线性非微扰状态下的光与物质的相互作用。 这项新技术在分子光子学和物质电子激光控制等新科学的发展中的应用,需要使用先进的高级并行数值算法进行高级建模和模拟。 这项研究的一个重要“副产品”,主要是理论上的,最近才在实验中,是分子高次谐波产生的发展,MHOHG 作为电流阿秒(1 asec=10**-18s)脉冲的主要来源,从线性到偶圆(如我们最近提出的)偏振。 阿秒脉冲是在自然时间尺度(阿秒)(氢原子中的电子轨道周期为 152 秒)上对电子进行成像、可视化和控制的首选工具。 质子运动等核运动是化学、生物学和材料中速度最快的原子,其时间尺度为几飞秒 (fs),这为原子和分子水平上的物质控制增加了另一个时间尺度。*该提案将重点发展非线性非微扰状态下激光-分子相互作用的理论、数值方法和简单实用模型。 将为高维偏微分方程、偏微分方程(如瞬态薛定谔方程、TDSE、瞬态狄拉克方程、相对论效应TDDE)开发高效并行数值算法,与传播效应麦克斯韦方程相结合,探索新型超快强激光技术在分子光子学新领域的应用。 对加拿大计算局的超级计算设施(例如美国大学的 40 000 核心机器)进行的高水平模拟将有助于发明和完善超快激光控制物质的简单模型,供实验人员使用。*本提案中的研究将有助于促进超快强激光科学在纳米技术和生命科学等广泛领域的新颖应用,其基础是新的科学方向——最终可视化和控制 电子的量子性质。 由有用分析模型的开发支持的高性能超级计算机数值模拟将针对超快强分子光子学的三个基本偏微分方程(TDSE、TDDE)以及麦克斯韦方程组进行。 模拟和模型将用于探索以下新型激光诱导物理过程的新应用: i) LIED - 激光诱导电子衍射; ii) LIET - 激光诱导电子转移; iii) PEHG——光电子全息术; iv) 相干电子波包 - CEWP 和电流; v) 圆偏振阿秒激光磁脉冲; vi) 超强激光和相对论。 微观-宏观非线性光学通过麦克斯韦方程得到进一步发展,允许探索新的非线性宏观现象,例如激光孤子、丝状结构、阿秒磁脉冲以及激光与物质相互作用的非线性非微扰状态中的相对论现象。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bandrauk, Andre其他文献
Bandrauk, Andre的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bandrauk, Andre', 18)}}的其他基金
Ultrafast Intense Molecular Photonics-from Femto to Attosecond Laser Chemistry
超快强分子光子学——从飞秒到阿秒激光化学
- 批准号:
RGPIN-2019-05291 - 财政年份:2022
- 资助金额:
$ 4.95万 - 项目类别:
Discovery Grants Program - Individual
Ultrafast Intense Molecular Photonics-from Femto to Attosecond Laser Chemistry
超快强分子光子学——从飞秒到阿秒激光化学
- 批准号:
RGPIN-2019-05291 - 财政年份:2021
- 资助金额:
$ 4.95万 - 项目类别:
Discovery Grants Program - Individual
Ultrafast Intense Molecular Photonics-from Femto to Attosecond Laser Chemistry
超快强分子光子学——从飞秒到阿秒激光化学
- 批准号:
RGPIN-2019-05291 - 财政年份:2020
- 资助金额:
$ 4.95万 - 项目类别:
Discovery Grants Program - Individual
Ultrafast Intense Molecular Photonics-from Femto to Attosecond Laser Chemistry
超快强分子光子学——从飞秒到阿秒激光化学
- 批准号:
RGPIN-2019-05291 - 财政年份:2019
- 资助金额:
$ 4.95万 - 项目类别:
Discovery Grants Program - Individual
Laser Control of Molecular Electronics-Femto to Attosecond Science
分子电子学的激光控制——飞秒到阿秒科学
- 批准号:
RGPIN-2014-04714 - 财政年份:2017
- 资助金额:
$ 4.95万 - 项目类别:
Discovery Grants Program - Individual
Laser Control of Molecular Electronics-Femto to Attosecond Science
分子电子学的激光控制——飞秒到阿秒科学
- 批准号:
RGPIN-2014-04714 - 财政年份:2016
- 资助金额:
$ 4.95万 - 项目类别:
Discovery Grants Program - Individual
Laser Control of Molecular Electronics-Femto to Attosecond Science
分子电子学的激光控制——飞秒到阿秒科学
- 批准号:
RGPIN-2014-04714 - 财政年份:2015
- 资助金额:
$ 4.95万 - 项目类别:
Discovery Grants Program - Individual
Laser Control of Molecular Electronics-Femto to Attosecond Science
分子电子学的激光控制——飞秒到阿秒科学
- 批准号:
RGPIN-2014-04714 - 财政年份:2014
- 资助金额:
$ 4.95万 - 项目类别:
Discovery Grants Program - Individual
Attosecond science - controlling electrons in molecules
阿秒科学——控制分子中的电子
- 批准号:
6409-2009 - 财政年份:2013
- 资助金额:
$ 4.95万 - 项目类别:
Discovery Grants Program - Individual
Attosecond science - controlling electrons in molecules
阿秒科学——控制分子中的电子
- 批准号:
6409-2009 - 财政年份:2012
- 资助金额:
$ 4.95万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
Cortical control of internal state in the insular cortex-claustrum region
- 批准号:
- 批准年份:2020
- 资助金额:25 万元
- 项目类别:
相似海外基金
MRI: Development of a Molecular Beam Instrument for High Resolution Laser Spectroscopy and Quantum Control Studies of Molecular Systems
MRI:开发用于分子系统高分辨率激光光谱和量子控制研究的分子束仪器
- 批准号:
2018443 - 财政年份:2020
- 资助金额:
$ 4.95万 - 项目类别:
Standard Grant
Molecular photophysics and laser control: Small molecules to fluorescent proteins
分子光物理学和激光控制:小分子到荧光蛋白
- 批准号:
RGPIN-2015-05341 - 财政年份:2019
- 资助金额:
$ 4.95万 - 项目类别:
Discovery Grants Program - Individual
Ultrafast coherent control of molecular dynamics with shaped laser pulses
利用整形激光脉冲对分子动力学进行超快相干控制
- 批准号:
RGPGP-2014-00085 - 财政年份:2018
- 资助金额:
$ 4.95万 - 项目类别:
Discovery Grants Program - Group
Molecular photophysics and laser control: Small molecules to fluorescent proteins
分子光物理学和激光控制:小分子到荧光蛋白
- 批准号:
RGPIN-2015-05341 - 财政年份:2018
- 资助金额:
$ 4.95万 - 项目类别:
Discovery Grants Program - Individual
Molecular photophysics and laser control: Small molecules to fluorescent proteins
分子光物理学和激光控制:小分子到荧光蛋白
- 批准号:
RGPIN-2015-05341 - 财政年份:2017
- 资助金额:
$ 4.95万 - 项目类别:
Discovery Grants Program - Individual
Laser Control of Molecular Electronics-Femto to Attosecond Science
分子电子学的激光控制——飞秒到阿秒科学
- 批准号:
RGPIN-2014-04714 - 财政年份:2017
- 资助金额:
$ 4.95万 - 项目类别:
Discovery Grants Program - Individual
Ultrafast coherent control of molecular dynamics with shaped laser pulses
利用整形激光脉冲对分子动力学进行超快相干控制
- 批准号:
RGPGP-2014-00085 - 财政年份:2017
- 资助金额:
$ 4.95万 - 项目类别:
Discovery Grants Program - Group
Laser-induced optimal control of molecular photochemical reaction and simulation of the time-resolved X-ray diffraction patterns
激光诱导分子光化学反应的优化控制和时间分辨X射线衍射图的模拟
- 批准号:
17J02010 - 财政年份:2017
- 资助金额:
$ 4.95万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Optical control of neuro-dynamics with laser-induced molecular manipulation
通过激光诱导分子操纵对神经动力学进行光学控制
- 批准号:
17H01820 - 财政年份:2017
- 资助金额:
$ 4.95万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Ultrafast coherent control of molecular dynamics with shaped laser pulses
利用整形激光脉冲对分子动力学进行超快相干控制
- 批准号:
RGPGP-2014-00085 - 财政年份:2016
- 资助金额:
$ 4.95万 - 项目类别:
Discovery Grants Program - Group














{{item.name}}会员




