Approximation algorithms for Graph Drawing

图形绘制的近似算法

基本信息

  • 批准号:
    RGPIN-2015-06216
  • 负责人:
  • 金额:
    $ 2.62万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2018
  • 资助国家:
    加拿大
  • 起止时间:
    2018-01-01 至 2019-12-31
  • 项目状态:
    已结题

项目摘要

In applications such as social networks, street maps, entity-relationship diagrams for data bases, organizational hierarchies and control flow diagrams for software engineering, the underlying structure can be described abstractly as a graph: it consists of vertices (humans, sites, entities, employees, functions) and edges (relationships, streets, function calls) between them. Visualizing such graphs helps in analyzing their structure, for example for detecting clusters or similarities.  This motivates the problem of graph drawing: develop algorithms that automatically convert a graph into a picture that is easy to read.******User studies have shown that the most important criteria for legibility of a graph drawing is to minimize the number of crossings. Hence an important sub-area of graph drawing is how to draw a planar graph, i.e., a graph that could be drawn without any crossings at all. Many algorithms for drawing planar graphs exist, but although they are provably good with regard to some quality measure, they often give pictures that are far from best-possible for a given graph.******The topic of the proposed research is approximation algorithms for planar graph drawing, i.e., to develop algorithms with performance guarantees that are provably within a factor of the optimum for all graphs. Currently very few approximation algorithms for drawing planar graphs exist. Even the key ingredients for using well-known techniques for approximation algorithms (such as LP relaxation and Baker's technique) have rarely been studied.  I recently made progress on these key ingredients for the objective of minimizing the area, and plan to expand the work into developing approximation algorithms for minimum-area drawings  A major challenge for this is to develop new lower bound tools for planar graph drawing, since the existing lower-bound tools have proved insufficient for approximation algorithms.  Possibly no approximation algorithms exist, and so another avenue of my proposed research is to prove such impossibilites by applying the techniques of APX-hardness from complexity theory.  ***In the longer term, many other graph drawing objectives are used in the applications, and developing approximation algorithms for them is an exciting challenge. Such algorithms would give graph drawings that are provably not too far from the best-possible drawing of the given input graph, and hence should be a significant improvement for displaying the graph-structures of the above application areas.**
在诸如社交网络、街道地图、数据库的实体关系图、组织层次结构和软件工程的控制流图等应用中,底层结构可以抽象地描述为一个图:它由顶点(人、站点、实体、员工、功能)和它们之间的边(关系、街道、功能调用)组成。可视化这些图形有助于分析它们的结构,例如检测聚类或相似性。这激发了图形绘制的问题:开发自动将图形转换为易于阅读的图片的算法。*用户研究表明,图形清晰度的最重要标准是尽量减少交叉点的数量。因此,图形绘制的一个重要子区域是如何绘制平面图形,即,一个完全没有交叉点的图存在许多绘制平面图的算法,但是尽管它们在某些质量度量方面被证明是好的,但是它们通常给出的图片对于给定的图来说远非最佳可能。所提出的研究的主题是平面图形绘制的近似算法,即,开发具有性能保证的算法,这些性能保证可证明在所有图的最佳因子内。目前很少有近似算法绘制平面图存在。即使是使用众所周知的近似算法技术的关键成分(如LP松弛和贝克的技术)很少被研究。我最近取得了进展,这些关键成分的目标,最小化的面积,并计划扩大工作到开发近似算法的最小面积绘图的一个主要挑战,这是开发新的下界工具,平面图形绘制,因为现有的下界工具已经证明不足以用于近似算法。可能不存在近似算法,因此我提出的研究的另一个途径是通过应用复杂性理论的APX硬度技术来证明这种不可能性。* 从长远来看,许多其他图形绘制目标在应用程序中使用,为它们开发近似算法是一个令人兴奋的挑战。这样的算法将给出的图可以证明与给定输入图的最佳可能图相差不远,因此对于显示上述应用领域的图结构来说应该是一个重大的改进。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Biedl, Therese其他文献

Biedl, Therese的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Biedl, Therese', 18)}}的其他基金

Algorithms for near-planar graphs
近平面图的算法
  • 批准号:
    RGPIN-2020-03958
  • 财政年份:
    2022
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Discovery Grants Program - Individual
Algorithms for near-planar graphs
近平面图的算法
  • 批准号:
    RGPIN-2020-03958
  • 财政年份:
    2021
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Discovery Grants Program - Individual
Algorithms for near-planar graphs
近平面图的算法
  • 批准号:
    RGPIN-2020-03958
  • 财政年份:
    2020
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Discovery Grants Program - Individual
Approximation algorithms for Graph Drawing
图形绘制的近似算法
  • 批准号:
    RGPIN-2015-06216
  • 财政年份:
    2019
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Discovery Grants Program - Individual
Approximation algorithms for Graph Drawing
图形绘制的近似算法
  • 批准号:
    RGPIN-2015-06216
  • 财政年份:
    2017
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Discovery Grants Program - Individual
Approximation algorithms for Graph Drawing
图形绘制的近似算法
  • 批准号:
    477867-2015
  • 财政年份:
    2017
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Approximation algorithms for Graph Drawing
图形绘制的近似算法
  • 批准号:
    RGPIN-2015-06216
  • 财政年份:
    2016
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Discovery Grants Program - Individual
Approximation algorithms for Graph Drawing
图形绘制的近似算法
  • 批准号:
    477867-2015
  • 财政年份:
    2015
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Approximation algorithms for Graph Drawing
图形绘制的近似算法
  • 批准号:
    RGPIN-2015-06216
  • 财政年份:
    2015
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Discovery Grants Program - Individual
Algorithms for geometric reconstruction problems
几何重建问题的算法
  • 批准号:
    227718-2010
  • 财政年份:
    2014
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

固定参数可解算法在平面图问题的应用以及和整数线性规划的关系
  • 批准号:
    60973026
  • 批准年份:
    2009
  • 资助金额:
    32.0 万元
  • 项目类别:
    面上项目
Computational Methods for Analyzing Toponome Data
  • 批准号:
    60601030
  • 批准年份:
    2006
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Approximation Algorithms for Graph Invariants
图不变量的近似算法
  • 批准号:
    519560-2018
  • 财政年份:
    2020
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Approximation algorithms for Graph Drawing
图形绘制的近似算法
  • 批准号:
    RGPIN-2015-06216
  • 财政年份:
    2019
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Discovery Grants Program - Individual
Approximation Algorithms for Graph Invariants
图不变量的近似算法
  • 批准号:
    519560-2018
  • 财政年份:
    2019
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Approximation Algorithms for Graph Invariants
图不变量的近似算法
  • 批准号:
    519560-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Approximation algorithms for Graph Drawing
图形绘制的近似算法
  • 批准号:
    RGPIN-2015-06216
  • 财政年份:
    2017
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Discovery Grants Program - Individual
Approximation algorithms for NP-hard graph connectivity problems
NP 难图连通性问题的近似算法
  • 批准号:
    509110-2017
  • 财政年份:
    2017
  • 资助金额:
    $ 2.62万
  • 项目类别:
    University Undergraduate Student Research Awards
Approximation algorithms for Graph Drawing
图形绘制的近似算法
  • 批准号:
    477867-2015
  • 财政年份:
    2017
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Approximation algorithms for Graph Drawing
图形绘制的近似算法
  • 批准号:
    RGPIN-2015-06216
  • 财政年份:
    2016
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Discovery Grants Program - Individual
Approximation algorithms for Graph Drawing
图形绘制的近似算法
  • 批准号:
    477867-2015
  • 财政年份:
    2015
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Approximation algorithms for Graph Drawing
图形绘制的近似算法
  • 批准号:
    RGPIN-2015-06216
  • 财政年份:
    2015
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了