Complex networks and vertex pursuit games
复杂网络和顶点追踪游戏
基本信息
- 批准号:RGPIN-2015-05409
- 负责人:
- 金额:$ 1.46万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2018
- 资助国家:加拿大
- 起止时间:2018-01-01 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Fundamental questions arise from studying networks, which emerge in every aspect of the natural and technological world. How can we model the spread of influence in a network? Do networks have an underlying geometry, and if so, how can we use the network structure to uncover the geometry? How do we most efficiently neutralize adversarial activity in a network?***The proposed project addresses these questions using state-of-the-art mathematical tools from graph theory, probability, and geometry, and aims to achieve the following objectives: to analyze new and existing models for real-world networks, to uncover the interaction between the underlying geometry of the network and graph structures, and to advance the frontier of knowledge in the mathematical study of vertex pursuit games. Major emphasis will be placed on building models of on-line social networks and simulating the spread of influence in these networks, with special attention to practical applications.******Complex networks pose big data challenges to researchers. The results of our research will be important to those concerned with data environments such as the ones found, for example, on Google where over 60 trillion pages are indexed, or on Facebook, which contains over one billion user accounts. The research will also benefit our understanding of the extremely complicated environments found in network models of sophisticated biological processes like those representing the metabolic pathways of complex carbohydrates, signaling systems, or various life threatening diseases such as the major cancers.***Vertex pursuit games are combinatorial models for the halting of an adversary's activity on a network. In these games, agents or cops are attempting to capture an intruder or robber who is loose on the vertices of a network. The most studied such game is Cops and Robbers, and the minimum number of cops needed to capture the robber in a graph is its cop number. Cops and Robbers and its variants form an active topic in graph theory, with new results rapidly appearing in the literature. Our specific contribution to the field will be to settle special cases of Meyniel's conjecture, which provides bounds on the cop number, with a view of eventually settling the conjecture.***Rigorous graph models tailored to experimental data provide rich insight into the structure and evolution of complex networks. Our research on complex networks responds to central theoretical questions in the field, and has potential applications ranging from improved recommender systems, mapping the spread of emotional contagion in a social network, and the treatment of disease using properties of protein interaction networks. The research in vertex pursuit games such as Cops and Robbers will accelerate discoveries in that field, spur new directions and problems in graph theory, and have applications to the monitoring or halting of adversarial activity in complex networks.**
研究网络产生了一些基本问题,这些问题出现在自然和技术世界的各个方面。我们如何对网络中的影响力传播进行建模?网络是否有潜在的几何结构?如果有,我们如何利用网络结构来揭示几何结构?我们如何最有效地中和网络中的敌对活动?*该项目使用来自图论、概率和几何的最先进的数学工具来解决这些问题,旨在实现以下目标:分析现实世界网络的新模型和现有模型,揭示网络底层几何与图结构之间的相互作用,并推进顶点追踪游戏数学研究中的知识前沿。主要重点将放在建立在线社交网络的模型和模拟这些网络中的影响力传播,特别关注实际应用。复杂网络给研究人员带来了大数据挑战。我们的研究结果对于那些关注数据环境的人来说非常重要,例如在Google上发现的超过60万亿个页面被索引,或者在Facebook上,包含超过10亿个用户帐户。这项研究还将有助于我们理解复杂生物过程网络模型中发现的极其复杂的环境,例如代表复杂碳水化合物代谢途径的环境,信号系统或各种威胁生命的疾病,如主要癌症。顶点追踪博弈是一种阻止网络上对手活动的组合模型。在这些游戏中,代理人或警察试图捕获在网络顶点上松散的入侵者或抢劫者。研究最多的此类游戏是警察和强盗,在图中捕获强盗所需的最少警察数量是其警察数量。《警察与强盗》及其变体在图论中形成了一个活跃的话题,新的结果迅速出现在文献中。我们对该领域的具体贡献将是解决Meyniel猜想的特殊情况,该猜想提供了cop数的界限,并最终解决该猜想。根据实验数据定制的严格图模型为复杂网络的结构和演化提供了丰富的见解。我们对复杂网络的研究回应了该领域的核心理论问题,并具有潜在的应用,包括改进推荐系统,绘制社交网络中情绪传染的传播,以及使用蛋白质相互作用网络的特性治疗疾病。对顶点追踪游戏(如Cops和Robbers)的研究将加速该领域的发现,刺激图论的新方向和问题,并可应用于监测或阻止复杂网络中的敌对活动。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bonato, Anthony其他文献
Geometric Protean Graphs
- DOI:
10.1080/15427951.2012.625246 - 发表时间:
2012-01-01 - 期刊:
- 影响因子:0
- 作者:
Bonato, Anthony;Janssen, Jeannette;Pralat, Pawe L. - 通讯作者:
Pralat, Pawe L.
Bounds on the burning number
- DOI:
10.1016/j.dam.2017.09.012 - 发表时间:
2018-01-30 - 期刊:
- 影响因子:1.1
- 作者:
Bessy, Stephane;Bonato, Anthony;Roshanbin, Elham - 通讯作者:
Roshanbin, Elham
The iterated local transitivity model for hypergraphs
- DOI:
10.1016/j.dam.2023.04.006 - 发表时间:
2023-05-09 - 期刊:
- 影响因子:1.1
- 作者:
Behague, Natalie C.;Bonato, Anthony;Marbach, Trent G. - 通讯作者:
Marbach, Trent G.
Burning a graph is hard
- DOI:
10.1016/j.dam.2017.07.016 - 发表时间:
2017-12-11 - 期刊:
- 影响因子:1.1
- 作者:
Bessy, Stephane;Bonato, Anthony;Roshanbin, Elham - 通讯作者:
Roshanbin, Elham
How to Burn a Graph
- DOI:
10.1080/15427951.2015.1103339 - 发表时间:
2016-03-03 - 期刊:
- 影响因子:0
- 作者:
Bonato, Anthony;Janssen, Jeannette;Roshanbin, Elham - 通讯作者:
Roshanbin, Elham
Bonato, Anthony的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bonato, Anthony', 18)}}的其他基金
Graph searching and modelling complex networks
图搜索和复杂网络建模
- 批准号:
RGPIN-2020-04326 - 财政年份:2022
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Graph searching and modelling complex networks
图搜索和复杂网络建模
- 批准号:
RGPIN-2020-04326 - 财政年份:2021
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Graph searching and modelling complex networks
图搜索和复杂网络建模
- 批准号:
RGPIN-2020-04326 - 财政年份:2020
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Complex networks and vertex pursuit games
复杂网络和顶点追踪游戏
- 批准号:
RGPIN-2015-05409 - 财政年份:2019
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Complex networks and vertex pursuit games
复杂网络和顶点追踪游戏
- 批准号:
RGPIN-2015-05409 - 财政年份:2017
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Complex networks and vertex pursuit games
复杂网络和顶点追踪游戏
- 批准号:
RGPIN-2015-05409 - 财政年份:2016
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Complex networks and vertex pursuit games
复杂网络和顶点追踪游戏
- 批准号:
RGPIN-2015-05409 - 财政年份:2015
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Graphs and complex networks
图和复杂网络
- 批准号:
227384-2010 - 财政年份:2014
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Graphs and complex networks
图和复杂网络
- 批准号:
227384-2010 - 财政年份:2013
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Graphs and complex networks
图和复杂网络
- 批准号:
227384-2010 - 财政年份:2012
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
Lagrange网络实用同步的不连续控制研究
- 批准号:61603174
- 批准年份:2016
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
基于隐半马尔科夫模型的无线传感器网络入侵检测系统研究
- 批准号:61101083
- 批准年份:2011
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
活化的星形胶质细胞网络参与脑缺血后神经元损伤的机制研究
- 批准号:81000491
- 批准年份:2010
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
面向认知网络的自律计算模型及评价方法研究
- 批准号:60973027
- 批准年份:2009
- 资助金额:30.0 万元
- 项目类别:面上项目
多跳无线 MESH 网络中 QoS 保障算法的研究设计和性能分析
- 批准号:60902041
- 批准年份:2009
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
红外高光谱分辨率卫星遥感大气参数反演研究
- 批准号:40475016
- 批准年份:2004
- 资助金额:10.0 万元
- 项目类别:面上项目
军民两用即兴网(Ad Hoc Networks)的研究
- 批准号:60372093
- 批准年份:2003
- 资助金额:26.0 万元
- 项目类别:面上项目
相似海外基金
Molecular Control of Thermomechanics and Shape-Morphing of Dynamic Covalent Polymer Networks
热机械的分子控制和动态共价聚合物网络的形状变形
- 批准号:
2406256 - 财政年份:2024
- 资助金额:
$ 1.46万 - 项目类别:
Standard Grant
Collaborative Research: AF: Medium: Foundations of Oblivious Reconfigurable Networks
合作研究:AF:媒介:遗忘可重构网络的基础
- 批准号:
2402851 - 财政年份:2024
- 资助金额:
$ 1.46万 - 项目类别:
Continuing Grant
Cooperativity Driven Communication through Noncovalent Networks in Biomimetic Systems
仿生系统中通过非共价网络的协作驱动通信
- 批准号:
2404149 - 财政年份:2024
- 资助金额:
$ 1.46万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 1.46万 - 项目类别:
Standard Grant
Collaborative Research: Spintronics Enabled Stochastic Spiking Neural Networks with Temporal Information Encoding
合作研究:自旋电子学支持具有时间信息编码的随机尖峰神经网络
- 批准号:
2333881 - 财政年份:2024
- 资助金额:
$ 1.46万 - 项目类别:
Standard Grant
Collaborative Research: Spintronics Enabled Stochastic Spiking Neural Networks with Temporal Information Encoding
合作研究:自旋电子学支持具有时间信息编码的随机尖峰神经网络
- 批准号:
2333882 - 财政年份:2024
- 资助金额:
$ 1.46万 - 项目类别:
Standard Grant
Collaborative Research: Liquid Crystal-Templated Chemical Vapor Polymerization of Complex Nanofiber Networks
合作研究:复杂纳米纤维网络的液晶模板化学气相聚合
- 批准号:
2322900 - 财政年份:2024
- 资助金额:
$ 1.46万 - 项目类别:
Standard Grant
Place-Based, Human-Centered Networks to Enhance Community Resilience and Equity
以地方为基础、以人为本的网络,以增强社区的弹性和公平性
- 批准号:
2242719 - 财政年份:2024
- 资助金额:
$ 1.46万 - 项目类别:
Standard Grant
The International Political Thought of Women’s Regional Networks
妇女区域网络的国际政治思想
- 批准号:
DE240101244 - 财政年份:2024
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Early Career Researcher Award
Deep Adder Networks on Edge Devices
边缘设备上的深加法器网络
- 批准号:
FT230100549 - 财政年份:2024
- 资助金额:
$ 1.46万 - 项目类别:
ARC Future Fellowships