Deformation and fatigue behavior of lightweight materials
轻质材料的变形与疲劳行为
基本信息
- 批准号:RGPIN-2017-04470
- 负责人:
- 金额:$ 2.7万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2018
- 资助国家:加拿大
- 起止时间:2018-01-01 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Canada's automotive industry – the biggest contributor to manufacturing GDP and largest manufacturing employer – is facing mounting pressures in several key areas including energy, emissions, and safety. Much of the materials science efforts in the transport industry is driven by the stringent regulation of fuel economy and climate-warming emissions. Lightweighting is a key strategy to address these challenges, since a 10% weight reduction results in a 6~8% fuel-efficiency gain. It has recently been portrayed as the "storm" of lightweighting – a revolution in materials, processes, and business models. This, along with materials designed for improved fatigue, creep, impact, or corrosion resistance, has been identified as one of six areas critical to solving national and global grand challenges. The research and development of lightweight materials, which are predicted to reach a global market of US$186 billion by 2020, have become one of the hottest areas in materials science and engineering. Magnesium is the lightest structural metal and is regarded as an ideal lightweight material to replace heavier metals. However, there are big hurdles to its wide applications, including low formability and strength, fatigue and reliability, corrosion resistance, welding and joining. Recent ground-breaking developments in magnesium-lithium alloys called "stainless magnesium" and magnesium nanocomposites pave the way for lightweight structural applications. The questions remain how these new alloys behave during cyclic deformation, if twinning and detwinning occur, and if the anisotropy and tension-compression yield asymmetry still exist. The proposed research is aimed to address these key questions and obstacles building upon the applicant's pioneering and extensive research experience and knowledge in this area, and develop a fundamental understanding of deformation and fatigue of magnesium alloys and other lightweight materials. Specifically, the following topics will be examined: i) the underlying cyclic deformation and twinning-detwinning mechanisms in new magnesium alloys will be elucidated and modeled, ii) the texture and residual stresses will be evaluated and analyzed using a unique high-temperature X-ray diffractometer which permits in-situ measurements as a function of temperature, iii) the deformation and fatigue resistance of dissimilar welded joints based on the "multi-material" lightweighting strategies will be examined, and iv) new processing approaches and models will be developed to weaken textures and anisotropy. These projects will improve fundamental understanding of deformation behavior, open the door to the development of next-generation high-performance lightweight materials, contribute to achieving the ultimate goal of constructing lightweight vehicles, protecting our environment and enhancing Canadian competitiveness in the global market.
加拿大的汽车行业是制造业GDP的最大贡献者和最大的制造业雇主,在能源、排放和安全等几个关键领域面临着越来越大的压力。交通运输行业的大部分材料科学工作都受到严格的燃油经济性和气候变暖排放法规的推动。轻量化是应对这些挑战的关键策略,因为10%的重量减轻会带来6~8%的燃油效率提升。它最近被描绘成轻量化的“风暴”-材料,工艺和商业模式的革命。这一点,沿着为改善疲劳、蠕变、冲击或耐腐蚀性而设计的材料,已被确定为解决国家和全球重大挑战的六个关键领域之一。轻质材料的研究和开发,预计到2020年将达到1860亿美元的全球市场,已成为材料科学和工程的热门领域之一。镁是最轻的结构金属,被认为是替代重金属的理想轻质材料。然而,它的广泛应用存在很大的障碍,包括低的成形性和强度,疲劳和可靠性,耐腐蚀性,焊接和连接。镁锂合金(称为“不锈镁”)和镁纳米复合材料的最新突破性发展为轻质结构应用铺平了道路。问题仍然是这些新合金在循环变形过程中的行为,如果孪生和去孪生发生,如果各向异性和拉压屈服不对称仍然存在。拟议的研究旨在解决这些关键问题和障碍,建立在申请人在这一领域的开创性和广泛的研究经验和知识的基础上,并对镁合金和其他轻质材料的变形和疲劳形成基本的理解。具体而言,将审查以下专题:i)将阐明和模拟新镁合金中潜在的循环变形和孪生-去孪生机制,ii)将使用独特的高温X射线衍射仪评估和分析织构和残余应力,该高温X射线衍射仪允许作为温度的函数进行原位测量,iii)将研究基于“多材料”轻量化策略的异种焊接接头的变形和抗疲劳性,以及iv)将开发新的加工方法和模型以削弱织构和各向异性。这些项目将提高对变形行为的基本理解,为下一代高性能轻质材料的开发打开大门,有助于实现建造轻量化车辆的最终目标,保护我们的环境并提高加拿大在全球市场上的竞争力。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Chen, Daolun其他文献
Hot-deformation kinetics analysis and extrusion parameter optimization of a dilute rare-earth free magnesium alloy
稀稀土镁合金热变形动力学分析及挤压参数优化
- DOI:
10.1016/j.jma.2022.07.013 - 发表时间:
2023-09-01 - 期刊:
- 影响因子:17.6
- 作者:
Wang, Qinghang;Zhai, Haowei;Chen, Daolun - 通讯作者:
Chen, Daolun
Low cycle fatigue properties of friction stir welded dissimilar 2024-to-7075 aluminum alloy joints
搅拌摩擦焊异种2024-7075铝合金接头的低周疲劳性能
- DOI:
10.1016/j.msea.2021.142423 - 发表时间:
2021-11-30 - 期刊:
- 影响因子:6.4
- 作者:
Niu, Pengliang;Li, Wenya;Chen, Daolun - 通讯作者:
Chen, Daolun
Achieving high damping capacity and strength simultaneously in a high-zinc aluminum alloy via melt spinning and hot extrusion
- DOI:
10.1016/j.msea.2021.142376 - 发表时间:
2022-01-10 - 期刊:
- 影响因子:6.4
- 作者:
Meng, Xianna;Zhang, Datong;Chen, Daolun - 通讯作者:
Chen, Daolun
Active Slip Mode Analysis of an Additively Manufactured Ti-6Al-4V Alloy via In-Grain Misorientation Axis Distribution
- DOI:
10.3390/met12040532 - 发表时间:
2022-04-01 - 期刊:
- 影响因子:2.9
- 作者:
Li, Chen;Sun, Jingli;Chen, Daolun - 通讯作者:
Chen, Daolun
Microstructure and Mechanical Properties of Ultrasonic Spot Welded Mg/Al Alloy Dissimilar Joints
- DOI:
10.3390/met8040229 - 发表时间:
2018-04-01 - 期刊:
- 影响因子:2.9
- 作者:
Peng, He;Jiang, Xianquan;Chen, Daolun - 通讯作者:
Chen, Daolun
Chen, Daolun的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Chen, Daolun', 18)}}的其他基金
Deformation and fatigue behavior of lightweight materials
轻质材料的变形与疲劳行为
- 批准号:
RGPIN-2017-04470 - 财政年份:2022
- 资助金额:
$ 2.7万 - 项目类别:
Discovery Grants Program - Individual
Deformation and fatigue behavior of lightweight materials
轻质材料的变形与疲劳行为
- 批准号:
RGPIN-2017-04470 - 财政年份:2021
- 资助金额:
$ 2.7万 - 项目类别:
Discovery Grants Program - Individual
Deformation and fatigue behavior of lightweight materials
轻质材料的变形与疲劳行为
- 批准号:
RGPIN-2017-04470 - 财政年份:2020
- 资助金额:
$ 2.7万 - 项目类别:
Discovery Grants Program - Individual
Deformation and fatigue behavior of lightweight materials
轻质材料的变形与疲劳行为
- 批准号:
RGPIN-2017-04470 - 财政年份:2019
- 资助金额:
$ 2.7万 - 项目类别:
Discovery Grants Program - Individual
Deformation and fatigue behavior of lightweight materials
轻质材料的变形与疲劳行为
- 批准号:
RGPIN-2017-04470 - 财政年份:2017
- 资助金额:
$ 2.7万 - 项目类别:
Discovery Grants Program - Individual
Fatigue and deformation aspects of lightweight materials
轻质材料的疲劳和变形方面
- 批准号:
249748-2011 - 财政年份:2015
- 资助金额:
$ 2.7万 - 项目类别:
Discovery Grants Program - Individual
Fatigue and deformation aspects of lightweight materials
轻质材料的疲劳和变形方面
- 批准号:
249748-2011 - 财政年份:2014
- 资助金额:
$ 2.7万 - 项目类别:
Discovery Grants Program - Individual
Fatigue and deformation aspects of lightweight materials
轻质材料的疲劳和变形方面
- 批准号:
249748-2011 - 财政年份:2013
- 资助金额:
$ 2.7万 - 项目类别:
Discovery Grants Program - Individual
Fatigue and deformation aspects of lightweight materials
轻质材料的疲劳和变形方面
- 批准号:
411969-2011 - 财政年份:2013
- 资助金额:
$ 2.7万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Electron backscatter diffraction: a powerful technique for materials characterization
电子背散射衍射:一种强大的材料表征技术
- 批准号:
439934-2013 - 财政年份:2012
- 资助金额:
$ 2.7万 - 项目类别:
Research Tools and Instruments - Category 1 (<$150,000)
相似海外基金
Deformation and fatigue behavior of lightweight materials
轻质材料的变形与疲劳行为
- 批准号:
RGPIN-2017-04470 - 财政年份:2022
- 资助金额:
$ 2.7万 - 项目类别:
Discovery Grants Program - Individual
Deformation and fatigue behavior of lightweight materials
轻质材料的变形与疲劳行为
- 批准号:
RGPIN-2017-04470 - 财政年份:2021
- 资助金额:
$ 2.7万 - 项目类别:
Discovery Grants Program - Individual
Deformation and fatigue behavior of lightweight materials
轻质材料的变形与疲劳行为
- 批准号:
RGPIN-2017-04470 - 财政年份:2020
- 资助金额:
$ 2.7万 - 项目类别:
Discovery Grants Program - Individual
Deformation and fatigue behavior of lightweight materials
轻质材料的变形与疲劳行为
- 批准号:
RGPIN-2017-04470 - 财政年份:2019
- 资助金额:
$ 2.7万 - 项目类别:
Discovery Grants Program - Individual
Research on optimal material properties of CAD/CAM crowns focusing on deformation behavior during fatigue.
研究 CAD/CAM 牙冠的最佳材料性能,重点关注疲劳期间的变形行为。
- 批准号:
19K19083 - 财政年份:2019
- 资助金额:
$ 2.7万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Deformation and fatigue behavior of lightweight materials
轻质材料的变形与疲劳行为
- 批准号:
RGPIN-2017-04470 - 财政年份:2017
- 资助金额:
$ 2.7万 - 项目类别:
Discovery Grants Program - Individual
Observation of lattice defects, deformation behavior in duplex alloys and evaluation of their lifetime using magnetic properties.
观察双相合金中的晶格缺陷、变形行为并利用磁性能评估其寿命。
- 批准号:
14205105 - 财政年份:2002
- 资助金额:
$ 2.7万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Cyclic Deformation and Fracture Behavior of L1_2-Type Intermetallic Compounds Using Magnetic Properties
利用磁性能研究 L1_2 型金属间化合物的循环变形和断裂行为
- 批准号:
12450283 - 财政年份:2000
- 资助金额:
$ 2.7万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
The Effect of Scandium on Thermal Stability and Fatigue Behavior of Ultra Fine Grained Al-Mg-Sc Alloy Produced by Severe Plastic Deformation
钪对强塑性变形超细晶Al-Mg-Sc合金热稳定性和疲劳行为的影响
- 批准号:
12650695 - 财政年份:2000
- 资助金额:
$ 2.7万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Effect of aging on deformation behavior of dentin in small area.
时效对牙本质小区域变形行为的影响。
- 批准号:
09470433 - 财政年份:1997
- 资助金额:
$ 2.7万 - 项目类别:
Grant-in-Aid for Scientific Research (B)