Computational Problems in Artificial Intelligence and Network Science: Probabilistic Analyses, Graph-Theoretic Characterizations, and Algorithmic Solutions
人工智能和网络科学中的计算问题:概率分析、图论表征和算法解决方案
基本信息
- 批准号:RGPIN-2014-04848
- 负责人:
- 金额:$ 2.33万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2018
- 资助国家:加拿大
- 起止时间:2018-01-01 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In Artificial Intelligence (AI) and the emerging field of network science, many computationally-hard problems have a natural graph-theoretic or logic formulation. A deep understanding of the nature of these problems and their underlying graph-theoretic structures is indispensable to design well-founded algorithmic solutions and effective modelling tools for (logic) reasoning and problem-solving in AI, and to analyze real-world social, information, and biological networks. My research in the next five years will be centered around two themes, dealing with algorithmic and modelling problems arising in the study of systems and environments that are dynamic, networked, with incomplete information, and sometimes with multiple interacting entities. **The first theme focuses on several algorithmic problems related to robust solutions to constraint satisfaction problems and defeasible reasoning with incomplete information. These problems plays an important role in the areas of constraint programming, satisfiability testing, and argumentation in AI. Algorithmic problems with solution concepts of a similar flavor, such as those in graphical games and AI planning in dynamic environments, will also be considered. My research will strive to understand the probabilistic behavior of the various solution concepts, the algorithms for finding such solutions, and the graph-theoretic constructs that characterize tractable subclasses of these problems. The chief goal is to gain insights into the power and limitation of data-reduction and branching rules that are essential for designing and enhancing general-purpose exact algorithms and fixed-parameter tractable algorithms for these problems. **The focus of the second theme is on problems from network science, concerning generative random models, graph-theoretic characterizations, and algorithms for community structures widely believed to play a critical role in understanding the organizing principle of a real-world complex network and the dynamic processes taking place in the network. My research under this theme has three main goals: (I) to design generative random models to overcome the difficulties that existing network models have in characterizing the statistics of higher-order structures of a network; (II) to develop, by using sound graph-theoretic constructs, a systematic approach for characterizing community structures that have rich internal structures and are robust against network changes; and (III) to design efficient algorithms for identifying such network communities.**The proposed research is expected to be of great practical value and significantly advance our knowledge. The research on the probabilistic behavior of random problem instances and the underlying graph-theoretic structures will offer a unique and novel perspective on several problems that are important in modelling computing tasks in dynamic and networked environments. The work on community structures will help bring the rich body of knowledge from research in graph theory into (social) network analysis. The algorithms and modelling tools developed in the proposed research should be useful for researchers (and practitioners in the software industry) to design better online social networks, to implement more sophisticated software for network analysis, to develop more effective systems to solve real-world optimization problems, and to tackle computational problems in multi-agent systems, bioinformatics, and sociology.
在人工智能(AI)和新兴的网络科学领域,许多计算困难的问题都有自然的图论或逻辑公式。深入理解这些问题的本质及其潜在的图论结构对于为人工智能中的(逻辑推理)和问题解决设计良好的算法解决方案和有效的建模工具以及分析现实世界的社会、信息和生物网络是必不可少的。我在未来五年的研究将围绕两个主题,处理在研究动态的、联网的、信息不完整的系统和环境中出现的算法和建模问题,有时还涉及多个相互作用的实体。**第一个主题集中在与约束满足问题的稳健解和不完全信息下的可废止推理相关的几个算法问题上。这些问题在人工智能中的约束程序设计、可满足性测试和论证等领域有着重要的作用。具有类似解决方案概念的算法问题,如图形游戏中的算法问题和动态环境中的人工智能规划,也将被考虑。我的研究将努力理解各种解决方案概念的概率行为,寻找这些解决方案的算法,以及表征这些问题的易于处理的子类的图论构造。主要目标是深入了解数据约简和分支规则的能力和局限性,这些规则对于设计和增强这些问题的通用精确算法和固定参数易处理算法至关重要。**第二个主题的焦点是来自网络科学的问题,涉及生成性随机模型、图论特征和社区结构的算法,人们普遍认为这些社区结构在理解现实世界复杂网络的组织原理和网络中发生的动态过程方面发挥了关键作用。在这一主题下,我的研究有三个主要目标:(I)设计生成随机模型,以克服现有网络模型在刻画网络高阶结构统计方面的困难;(Ii)通过使用合理的图论构造,开发一种系统的方法来刻画具有丰富内部结构且对网络变化具有健壮性的社区结构;以及(Iii)设计有效的算法来识别此类网络社区。**所提出的研究将具有重要的实用价值,并极大地促进我们的知识的发展。对随机问题实例的概率行为和潜在的图论结构的研究将为动态和网络环境中的计算任务建模中的几个重要问题提供独特和新颖的视角。关于社区结构的工作将有助于将图论研究中的丰富知识体系引入(社会)网络分析。在拟议的研究中开发的算法和建模工具应该对研究人员(和软件行业的从业者)有用,以设计更好的在线社交网络,实现更复杂的网络分析软件,开发更有效的系统来解决现实世界的优化问题,并解决多智能体系统、生物信息学和社会学中的计算问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gao, Yong其他文献
Roles of a maize phytochrome-interacting factors protein ZmPIF3 in regulation of drought stress responses by controlling stomatal closure in transgenic rice without yield penalty
玉米光敏色素相互作用因子蛋白 ZmPIF3 在通过控制转基因水稻气孔关闭来调节干旱胁迫反应中的作用而没有产量损失
- DOI:
10.1007/s11103-018-0739-4 - 发表时间:
2018-07-01 - 期刊:
- 影响因子:5.1
- 作者:
Gao, Yong;Wu, Meiqin;Chen, Jianmin - 通讯作者:
Chen, Jianmin
Role of digitalization, digital competence, and parental support on performance of sports education in low-income college students.
- DOI:
10.3389/fpsyg.2022.979318 - 发表时间:
2022 - 期刊:
- 影响因子:3.8
- 作者:
Li, Zongxi;Slavkova, Olena;Gao, Yong - 通讯作者:
Gao, Yong
Spatial diversity processing mechanism based on the distributed underwater acoustic communication system.
- DOI:
10.1371/journal.pone.0296117 - 发表时间:
2024 - 期刊:
- 影响因子:3.7
- 作者:
Zhou, Manli;Zhang, Hao;Lv, Tingting;Gao, Yong;Duan, Yingying - 通讯作者:
Duan, Yingying
Bioactive VS(4)-based sonosensitizer for robust chemodynamic, sonodynamic and osteogenic therapy of infected bone defects.
- DOI:
10.1186/s12951-023-02283-6 - 发表时间:
2024-01-16 - 期刊:
- 影响因子:10.2
- 作者:
He, Yaqi;Liu, Xin;Lei, Jie;Ma, Liang;Zhang, Xiaoguang;Wang, Hongchuan;Lei, Chunchi;Feng, Xiaobo;Yang, Cao;Gao, Yong - 通讯作者:
Gao, Yong
Optimizing Microstructure Morphology and Reducing Electronic Losses in 1 cm2 Polymer Solar Cells to Achieve Efficiency over 15%
优化%20微观结构%20形态%20和%20减少%20电子%20损耗%20in%201%20cm(2)%20聚合物%20太阳能%20电池%20至%20实现%20效率%20over%2015%
- DOI:
10.1021/acsenergylett.9b01447 - 发表时间:
2019-10-01 - 期刊:
- 影响因子:22
- 作者:
Fan, Baobing;Zeng, Zhaomiyi;Gao, Yong - 通讯作者:
Gao, Yong
Gao, Yong的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gao, Yong', 18)}}的其他基金
Artificial Intelligence and Network Science: Solution Concepts, Graph-Theoretic Characterizations, and Their Societal Aspects
人工智能和网络科学:解决方案概念、图论特征及其社会方面
- 批准号:
RGPIN-2019-04904 - 财政年份:2022
- 资助金额:
$ 2.33万 - 项目类别:
Discovery Grants Program - Individual
Artificial Intelligence and Network Science: Solution Concepts, Graph-Theoretic Characterizations, and Their Societal Aspects
人工智能和网络科学:解决方案概念、图论特征及其社会方面
- 批准号:
RGPIN-2019-04904 - 财政年份:2021
- 资助金额:
$ 2.33万 - 项目类别:
Discovery Grants Program - Individual
Artificial Intelligence and Network Science: Solution Concepts, Graph-Theoretic Characterizations, and Their Societal Aspects
人工智能和网络科学:解决方案概念、图论特征及其社会方面
- 批准号:
RGPIN-2019-04904 - 财政年份:2020
- 资助金额:
$ 2.33万 - 项目类别:
Discovery Grants Program - Individual
Artificial Intelligence and Network Science: Solution Concepts, Graph-Theoretic Characterizations, and Their Societal Aspects
人工智能和网络科学:解决方案概念、图论特征及其社会方面
- 批准号:
RGPIN-2019-04904 - 财政年份:2019
- 资助金额:
$ 2.33万 - 项目类别:
Discovery Grants Program - Individual
Computational Problems in Artificial Intelligence and Network Science: Probabilistic Analyses, Graph-Theoretic Characterizations, and Algorithmic Solutions
人工智能和网络科学中的计算问题:概率分析、图论表征和算法解决方案
- 批准号:
RGPIN-2014-04848 - 财政年份:2017
- 资助金额:
$ 2.33万 - 项目类别:
Discovery Grants Program - Individual
Computational Problems in Artificial Intelligence and Network Science: Probabilistic Analyses, Graph-Theoretic Characterizations, and Algorithmic Solutions
人工智能和网络科学中的计算问题:概率分析、图论表征和算法解决方案
- 批准号:
RGPIN-2014-04848 - 财政年份:2016
- 资助金额:
$ 2.33万 - 项目类别:
Discovery Grants Program - Individual
Computational Problems in Artificial Intelligence and Network Science: Probabilistic Analyses, Graph-Theoretic Characterizations, and Algorithmic Solutions
人工智能和网络科学中的计算问题:概率分析、图论表征和算法解决方案
- 批准号:
RGPIN-2014-04848 - 财政年份:2015
- 资助金额:
$ 2.33万 - 项目类别:
Discovery Grants Program - Individual
Computational Problems in Artificial Intelligence and Network Science: Probabilistic Analyses, Graph-Theoretic Characterizations, and Algorithmic Solutions
人工智能和网络科学中的计算问题:概率分析、图论表征和算法解决方案
- 批准号:
RGPIN-2014-04848 - 财政年份:2014
- 资助金额:
$ 2.33万 - 项目类别:
Discovery Grants Program - Individual
Algorithms and complexity of hard problems: bridging the gap between theory and practice
难题的算法和复杂性:弥合理论与实践之间的差距
- 批准号:
327587-2009 - 财政年份:2013
- 资助金额:
$ 2.33万 - 项目类别:
Discovery Grants Program - Individual
Algorithms and complexity of hard problems: bridging the gap between theory and practice
难题的算法和复杂性:弥合理论与实践之间的差距
- 批准号:
327587-2009 - 财政年份:2012
- 资助金额:
$ 2.33万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
高能级科创平台推动教育科技人才融合发展的重大问题研究
- 批准号:2025C25088(SYS)
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
阵列人工沙坝的波浪反射调控机理和优化设计研究
- 批准号:QN25E090017
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
人工林多目标规划问题元启发框架及关键算法机制研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
人工量子杂化体系物理前沿问题
- 批准号:
- 批准年份:2024
- 资助金额:1000 万元
- 项目类别:创新研究群体项目
结合人工智能和列生成的大规模弧路由问题关键技术研究
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:青年科学基金项目
针对人工表面等离激元器件多尺度电磁隐身问题的高效DGTD-HDGTD混合时域算法的研究
- 批准号:62301133
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
问题性手机使用的人工智能干预研究——基于自我决定理论和压力应对理论的双轨机制
- 批准号:82304258
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
6G物理层人工智能技术边界问题分析与普适性机理研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
高维问题可信深度算子学习算法及应用研究
- 批准号:92270115
- 批准年份:2022
- 资助金额:80.00 万元
- 项目类别:重大研究计划
医学影像中的人工智能方法与数学理论专题讲习班
- 批准号:12126413
- 批准年份:2021
- 资助金额:20.0 万元
- 项目类别:数学天元基金项目
相似海外基金
I-Corps: Fast and Accurate Artificial Intelligence/Machine Learning Solutions to Inverse and Imaging Problems
I-Corps:针对逆向和成像问题的快速准确的人工智能/机器学习解决方案
- 批准号:
2224299 - 财政年份:2022
- 资助金额:
$ 2.33万 - 项目类别:
Standard Grant
Clinicians, Computers, and a Common Language: Building Artificial Intelligence which Collaborates with Human Knowledge on Complex Problems in Medical Image Analysis and Surgical Data Science
临床医生、计算机和通用语言:构建人工智能,与人类知识协作解决医学图像分析和手术数据科学中的复杂问题
- 批准号:
516382-2018 - 财政年份:2019
- 资助金额:
$ 2.33万 - 项目类别:
Postdoctoral Fellowships
Clinicians, Computers, and a Common Language: Building Artificial Intelligence which Collaborates with Human Knowledge on Complex Problems in Medical Image Analysis and Surgical Data Science
临床医生、计算机和通用语言:构建人工智能,与人类知识协作解决医学图像分析和手术数据科学中的复杂问题
- 批准号:
516382-2018 - 财政年份:2018
- 资助金额:
$ 2.33万 - 项目类别:
Postdoctoral Fellowships
Theoretical and empirical research on ethical problems of artificial intelligence, robots and cyborgs
人工智能、机器人和赛博格伦理问题的理论与实证研究
- 批准号:
17K12800 - 财政年份:2017
- 资助金额:
$ 2.33万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Clinicians, Computers, and a Common Language: Building Artificial Intelligence which Collaborates with Human Knowledge on Complex Problems in Medical Image Analysis and Surgical Data Science
临床医生、计算机和通用语言:构建人工智能,与人类知识协作解决医学图像分析和手术数据科学中的复杂问题
- 批准号:
516382-2018 - 财政年份:2017
- 资助金额:
$ 2.33万 - 项目类别:
Postdoctoral Fellowships
Application of Quantum Algorithms for Lattice Problems to Post-Quantum Cryptography and Quantum Artificial Intelligence
格子问题的量子算法在后量子密码学和量子人工智能中的应用
- 批准号:
17K00027 - 财政年份:2017
- 资助金额:
$ 2.33万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Computational Problems in Artificial Intelligence and Network Science: Probabilistic Analyses, Graph-Theoretic Characterizations, and Algorithmic Solutions
人工智能和网络科学中的计算问题:概率分析、图论表征和算法解决方案
- 批准号:
RGPIN-2014-04848 - 财政年份:2017
- 资助金额:
$ 2.33万 - 项目类别:
Discovery Grants Program - Individual
Computational Problems in Artificial Intelligence and Network Science: Probabilistic Analyses, Graph-Theoretic Characterizations, and Algorithmic Solutions
人工智能和网络科学中的计算问题:概率分析、图论表征和算法解决方案
- 批准号:
RGPIN-2014-04848 - 财政年份:2016
- 资助金额:
$ 2.33万 - 项目类别:
Discovery Grants Program - Individual
Computational Problems in Artificial Intelligence and Network Science: Probabilistic Analyses, Graph-Theoretic Characterizations, and Algorithmic Solutions
人工智能和网络科学中的计算问题:概率分析、图论表征和算法解决方案
- 批准号:
RGPIN-2014-04848 - 财政年份:2015
- 资助金额:
$ 2.33万 - 项目类别:
Discovery Grants Program - Individual
Computational Problems in Artificial Intelligence and Network Science: Probabilistic Analyses, Graph-Theoretic Characterizations, and Algorithmic Solutions
人工智能和网络科学中的计算问题:概率分析、图论表征和算法解决方案
- 批准号:
RGPIN-2014-04848 - 财政年份:2014
- 资助金额:
$ 2.33万 - 项目类别:
Discovery Grants Program - Individual