Semiparametric Inference for Integer-Valued Time Series

整数值时间序列的半参数推理

基本信息

  • 批准号:
    RGPIN-2015-03889
  • 负责人:
  • 金额:
    $ 0.8万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2018
  • 资助国家:
    加拿大
  • 起止时间:
    2018-01-01 至 2019-12-31
  • 项目状态:
    已结题

项目摘要

Discrete time series appear in a wide variety of settings. Energy forecasters may wish to understand patterns in the average number of windy days per month over time as a means to predicting wind power. Hydrologists may wish to forecast future river crests based on estimates of average number of rainy days. Public health officials may want to assess whether there is a declining trend in the number of cases of influenza over time after a major medical intervention such as mass immunizations. ***One objective of statistical modeling of the dynamics of a time series is to predict future values of the series. Forecasting of river crests based on estimates of mean number of rainy days is an example of the latter objective. Yet another objective is to understand the relationship between typical values of the time series and a set of explanatory variables while adjusting for the dependent nature of the data. Estimating the trend in the average number of cases of a disease after an intervention is an example of the former objective; this approach is known as regression modeling. This research program is primarily concerned with time series regression modeling for discrete data. Usual time series regression modeling problems are studied as well as regression problems pertaining to "big data". When a large number of predictors are collected, not all variables will be fully relevant in explaining the mean counts. I will examine a "big data" technique known as "shrinkage estimation" that incorporates information from variables with partial relevance with a view towards improving prediction power of the regression model.***Typical statistical models for count time series data make assumptions about the data generating mechanism giving rise to the data; these assumptions are in practice difficult to verify. In my research program, I relax assumptions about how discrete-valued time series data arise and study the advantages as well as the disadvantages from such a regression modeling approach. I adopt an estimating function theory modeling framework for model parameter estimation as it provides a unifying approach to discrete-valued time series estimation. The estimating function theory framework encompasses many of the statistical models proposed for explaining the dynamics for integer-valued time series. Furthermore, the methodology is easy to implement in contrast to some of the methods that require more stringent assumptions about the data generating mechanism. The findings from this research program will allow researchers to compare and contrast estimates derived from both the less restrictive methodology with that of existing methodology. If the results from both methodologies are very different, then the end users of the methodology will be able to use the results from this research program as an endpoint with confidence in their statistical conclusions. **
离散时间序列出现在各种各样的设置中。能源预报员可能希望了解每月平均刮风天数随时间的变化规律,以此作为预测风力发电能力的一种手段。水文学家可能希望根据对平均雨天数的估计来预测未来的河峰。公共卫生官员可能想要评估在大规模免疫等重大医疗干预之后,流感病例数量是否随着时间的推移而呈下降趋势。对时间序列动态进行统计建模的一个目标是预测该序列的未来值。根据对平均雨天天数的估计对河峰进行预报就是后一目标的一个例子。另一个目标是了解时间序列的典型值与一组解释变量之间的关系,同时根据数据的相依性质进行调整。估计干预后疾病平均病例数的趋势就是前一个目标的一个例子;这种方法被称为回归建模。本研究项目主要涉及离散数据的时间序列回归建模。研究了常见的时间序列回归建模问题以及与“大数据”相关的回归问题。当收集到大量的预测值时,并不是所有的变量在解释平均值时都是完全相关的。我将研究一种称为“收缩估计”的“大数据”技术,它结合了部分相关变量的信息,以期提高回归模型的预测能力。*统计时间序列数据的典型统计模型对产生数据的数据生成机制做出假设;这些假设在实践中很难验证。在我的研究计划中,我放松了对离散值时间序列数据如何产生的假设,并研究了这种回归建模方法的优点和缺点。我采用估计函数理论的建模框架进行模型参数估计,因为它为离散时间序列估计提供了一种统一的方法。估计函数理论框架包含了许多为解释整数值时间序列的动力学而提出的统计模型。此外,与对数据生成机制要求更严格的假设的一些方法相比,该方法很容易实现。这项研究计划的结果将使研究人员能够比较和对比从限制性较低的方法学和现有方法学得出的估计。如果两种方法的结果非常不同,那么方法的最终用户将能够使用该研究计划的结果作为终点,对他们的统计结论充满信心。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ghahramani, Melody其他文献

Ghahramani, Melody的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ghahramani, Melody', 18)}}的其他基金

Semiparametric Inference for Integer-Valued Time Series
整数值时间序列的半参数推理
  • 批准号:
    RGPIN-2015-03889
  • 财政年份:
    2021
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Semiparametric Inference for Integer-Valued Time Series
整数值时间序列的半参数推理
  • 批准号:
    RGPIN-2015-03889
  • 财政年份:
    2020
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Semiparametric Inference for Integer-Valued Time Series
整数值时间序列的半参数推理
  • 批准号:
    RGPIN-2015-03889
  • 财政年份:
    2017
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Semiparametric Inference for Integer-Valued Time Series
整数值时间序列的半参数推理
  • 批准号:
    RGPIN-2015-03889
  • 财政年份:
    2016
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Semiparametric Inference for Integer-Valued Time Series
整数值时间序列的半参数推理
  • 批准号:
    RGPIN-2015-03889
  • 财政年份:
    2015
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Inference using estimating functions with applications
通过应用程序使用估计函数进行推理
  • 批准号:
    356038-2008
  • 财政年份:
    2014
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Inference using estimating functions with applications
通过应用程序使用估计函数进行推理
  • 批准号:
    356038-2008
  • 财政年份:
    2011
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Inference using estimating functions with applications
通过应用程序使用估计函数进行推理
  • 批准号:
    356038-2008
  • 财政年份:
    2010
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Inference using estimating functions with applications
通过应用程序使用估计函数进行推理
  • 批准号:
    356038-2008
  • 财政年份:
    2009
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Inference using estimating functions with applications
通过应用程序使用估计函数进行推理
  • 批准号:
    356038-2008
  • 财政年份:
    2008
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual

相似海外基金

Spectral embedding methods and subsequent inference tasks on dynamic multiplex graphs
动态多路复用图上的谱嵌入方法和后续推理任务
  • 批准号:
    EP/Y002113/1
  • 财政年份:
    2024
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Research Grant
CAREER: Game Theoretic Models for Robust Cyber-Physical Interactions: Inference and Design under Uncertainty
职业:稳健的网络物理交互的博弈论模型:不确定性下的推理和设计
  • 批准号:
    2336840
  • 财政年份:
    2024
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Continuing Grant
CAREER: Statistical foundations of particle tracking and trajectory inference
职业:粒子跟踪和轨迹推断的统计基础
  • 批准号:
    2339829
  • 财政年份:
    2024
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Continuing Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
  • 批准号:
    2412357
  • 财政年份:
    2024
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Standard Grant
Probabilistic Inference Based Utility Evaluation and Path Generation for Active Autonomous Exploration of USVs in Unknown Confined Marine Environments
基于概率推理的效用评估和路径生成,用于未知受限海洋环境中 USV 主动自主探索
  • 批准号:
    EP/Y000862/1
  • 财政年份:
    2024
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Research Grant
CAREER: Efficient Large Language Model Inference Through Codesign: Adaptable Software Partitioning and FPGA-based Distributed Hardware
职业:通过协同设计进行高效的大型语言模型推理:适应性软件分区和基于 FPGA 的分布式硬件
  • 批准号:
    2339084
  • 财政年份:
    2024
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Continuing Grant
AI4PhotMod - Artificial Intelligence for parameter inference in Photosynthesis Models
AI4PhotMod - 用于光合作用模型中参数推断的人工智能
  • 批准号:
    BB/Y51388X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Research Grant
CSR: Small: Latency-controlled Reduction of Data Center Expenses for Handling Bursty ML Inference Requests
CSR:小:通过延迟控制减少数据中心处理突发 ML 推理请求的费用
  • 批准号:
    2336886
  • 财政年份:
    2024
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Standard Grant
CAREER: Statistical Inference in Observational Studies -- Theory, Methods, and Beyond
职业:观察研究中的统计推断——理论、方法及其他
  • 批准号:
    2338760
  • 财政年份:
    2024
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Continuing Grant
STATISTICAL AND COMPUTATIONAL THRESHOLDS IN SPIN GLASSES AND GRAPH INFERENCE PROBLEMS
自旋玻璃和图推理问题的统计和计算阈值
  • 批准号:
    2347177
  • 财政年份:
    2024
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了