Symmetry Reduction Method and Surfaces in Lie Algebras for Nonlinear Phenomena in Physics
物理非线性现象李代数中的对称性约简方法和曲面
基本信息
- 批准号:RGPIN-2014-06401
- 负责人:
- 金额:$ 1.82万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2018
- 资助国家:加拿大
- 起止时间:2018-01-01 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The proposed research aims at constructing exact and approximate analytic solutions of systems of nonlinear partial differential equations and investigating their properties important for the description of physical phenomena. The project relies on methods of symmetry reduction and geometric studies of surfaces immersed in homogeneous spaces. These methods are applied to nonlinear systems of field theory and fluid dynamics. New tools are proposed to investigate these complex systems. The program includes the following projects:**1. Surfaces in Homogeneous Spaces and Nonlinear Field Theory**Many models of field theory (e.g. sigma models) have deep and previously not expected relations with the differential geometrical study of surfaces immersed in homogeneous spaces. In this project, some techniques for constructing such surfaces are proposed and their properties are analyzed in connection with physical features of the model. This study has many applications to physical systems describing phenomena in which surface dynamics is of interest (e.g. in quantum field theory, phase transition theory, fluid dynamics and the theory of biological membranes).**2. Quantum Hamiltonian Systems and Soliton Surfaces**This project offers a systematic description of integrable quantum Hamiltonian systems and their soliton solutions. The proposed approach combines the analysis of generalized symmetries of such systems and associated surfaces immersed in Lie algebras. It will be employed, among other, for constructing integrable quantum systems with a definite gap in the bounded spectrum which have interesting physical applications.**3. Extension of Invariant Solutions via the Variational Method**This project involves a new way of constructing approximate solutions of nonlinear systems, derivable from an action integral by using variational methods (introducing variational parameters to group-invariant solutions). This approach can be useful for applications to many physical situations, especially dynamical processes which do not have a high degree of symmetry and may provide approximate analytical solutions to many problems which so far were accessible by numerical description only.
该研究的目的是构造非线性偏微分方程组的精确解析解和近似解析解,并研究其对于描述物理现象的重要性质。该项目依赖于对称性缩减的方法和对沉浸在均匀空间中的表面的几何研究。这些方法适用于场论和流体动力学的非线性系统。人们提出了新的工具来研究这些复杂的系统。该程序包括以下项目:**1.齐次空间中的曲面和非线性场理论**许多场论模型(例如,Sigma模型)与均匀空间中的曲面的微分几何研究有着深厚的和以前没有预料到的联系。在这个项目中,提出了一些构造这种曲面的技术,并结合模型的物理特征分析了它们的性质。这项研究在描述表面动力学感兴趣的现象的物理系统中有许多应用(例如量子场论、相变理论、流体动力学和生物膜理论)。**2.量子哈密顿系统和孤子表面**本项目系统地描述了可积量子哈密顿系统及其孤子解。所提出的方法结合了对这类系统的广义对称性的分析以及浸入李代数中的相关曲面。它将被用来构造在有界谱中具有一定间隙的可积量子系统,这些系统具有有趣的物理应用。**3.通过变分方法的不变解的扩展**这个项目涉及到一种新的方法来构造非线性系统的近似解,该系统可以通过使用变分方法(将变分参数引入群不变解)从作用量积分得到。这种方法可以用于许多物理情况,特别是不具有高度对称性的动态过程,并且可以为许多迄今只能通过数值描述获得的问题提供近似解析解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Grundland, AlfredMichel其他文献
Grundland, AlfredMichel的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Grundland, AlfredMichel', 18)}}的其他基金
Symmetry Group Analysis and Surfaces in Lie Algebras for Nonlinear Phenomena in Physics
物理学中非线性现象的李代数的对称群分析和曲面
- 批准号:
RGPIN-2019-03984 - 财政年份:2022
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Symmetry Group Analysis and Surfaces in Lie Algebras for Nonlinear Phenomena in Physics
物理学中非线性现象的李代数的对称群分析和曲面
- 批准号:
RGPIN-2019-03984 - 财政年份:2021
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Symmetry Group Analysis and Surfaces in Lie Algebras for Nonlinear Phenomena in Physics
物理学中非线性现象的李代数的对称群分析和曲面
- 批准号:
RGPIN-2019-03984 - 财政年份:2020
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Symmetry Group Analysis and Surfaces in Lie Algebras for Nonlinear Phenomena in Physics
物理学中非线性现象的李代数的对称群分析和曲面
- 批准号:
RGPIN-2019-03984 - 财政年份:2019
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Symmetry reduction method and surfaces in life algebras for nonlinear phenomena in physics
物理非线性现象的生命代数中的对称约简方法和曲面
- 批准号:
36257-2009 - 财政年份:2013
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Symmetry reduction method and surfaces in life algebras for nonlinear phenomena in physics
物理非线性现象的生命代数中的对称约简方法和曲面
- 批准号:
36257-2009 - 财政年份:2012
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Symmetry reduction method and surfaces in life algebras for nonlinear phenomena in physics
物理非线性现象的生命代数中的对称约简方法和曲面
- 批准号:
36257-2009 - 财政年份:2011
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Symmetry reduction method and surfaces in life algebras for nonlinear phenomena in physics
物理非线性现象的生命代数中的对称约简方法和曲面
- 批准号:
36257-2009 - 财政年份:2010
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Symmetry reduction method and surfaces in life algebras for nonlinear phenomena in physics
物理非线性现象的生命代数中的对称约简方法和曲面
- 批准号:
36257-2009 - 财政年份:2009
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
symmetry reduction method and surfaces on lie groups for nonlinear phenomena in physics
物理非线性现象的对称约简方法和李群曲面
- 批准号:
36257-2004 - 财政年份:2008
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
兼捕减少装置(Bycatch Reduction Devices, BRD)对拖网网囊系统水动力及渔获性能的调控机制
- 批准号:32373187
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Symmetry Reduction Method and Surfaces in Lie Algebras for Nonlinear Phenomena in Physics
物理非线性现象李代数中的对称性约简方法和曲面
- 批准号:
RGPIN-2014-06401 - 财政年份:2017
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Symmetry Reduction Method and Surfaces in Lie Algebras for Nonlinear Phenomena in Physics
物理非线性现象李代数中的对称性约简方法和曲面
- 批准号:
RGPIN-2014-06401 - 财政年份:2016
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Symmetry Reduction Method and Surfaces in Lie Algebras for Nonlinear Phenomena in Physics
物理非线性现象李代数中的对称性约简方法和曲面
- 批准号:
RGPIN-2014-06401 - 财政年份:2015
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Symmetry Reduction Method and Surfaces in Lie Algebras for Nonlinear Phenomena in Physics
物理非线性现象李代数中的对称性约简方法和曲面
- 批准号:
RGPIN-2014-06401 - 财政年份:2014
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Symmetry reduction method and surfaces in life algebras for nonlinear phenomena in physics
物理非线性现象的生命代数中的对称约简方法和曲面
- 批准号:
36257-2009 - 财政年份:2013
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Symmetry reduction method and surfaces in life algebras for nonlinear phenomena in physics
物理非线性现象的生命代数中的对称约简方法和曲面
- 批准号:
36257-2009 - 财政年份:2012
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Symmetry reduction method and surfaces in life algebras for nonlinear phenomena in physics
物理非线性现象的生命代数中的对称约简方法和曲面
- 批准号:
36257-2009 - 财政年份:2011
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Symmetry reduction method and surfaces in life algebras for nonlinear phenomena in physics
物理非线性现象的生命代数中的对称约简方法和曲面
- 批准号:
36257-2009 - 财政年份:2010
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Symmetry reduction method and surfaces in life algebras for nonlinear phenomena in physics
物理非线性现象的生命代数中的对称约简方法和曲面
- 批准号:
36257-2009 - 财政年份:2009
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
symmetry reduction method and surfaces on lie groups for nonlinear phenomena in physics
物理非线性现象的对称约简方法和李群曲面
- 批准号:
36257-2004 - 财政年份:2008
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual