Light-Matter Interactions in Photonic Crystals
光子晶体中的光与物质相互作用
基本信息
- 批准号:RGPIN-2014-05045
- 负责人:
- 金额:$ 8.23万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2018
- 资助国家:加拿大
- 起止时间:2018-01-01 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
We propose to study novel and fundamental light-matter interactions in photonic crystals and related nano-structures. The novelty of these materials results from their ability to trap light in unique ways and to engineer ultra-strong coupling between photons and resonant electronic excitations in matter. We propose to elucidate the practical applications of these materials to solar energy harvesting, optical information processing, novel light sources, and optical bio-sensing. We will work closely with leading experimental and nano-fabrication groups to realize the predictions of our theoretical and numerical modeling.* We propose to develop thin-film photonic crystal architectures for light trapping, absorption and solar spectral reshaping in next generation photovoltaics. Our effort will focus on the computational design, synthesis, and optical testing of photonic architectures that alter fundamental photon-matter interactions at sub-wavelength scales. The designed architectures offer new paradigms to control, trap, and convert solar energy and to compress the frequency bandwidth of sunlight within the solar cell. The underlying physics of our enhanced light trapping and solar absorption is the through the coupling of sunlight to slow-light modes of the photonic crystal that propagate in directions transverse to the thin-film surface. This corresponds to a spectral range where the photonic density of states is enhanced relative to that of a homogeneous material. Our approach involves the integration of graded anti-reflection architectures with photonic crystal based light-trapping and absorption. This enables light absorption in thin-film (< 500 nanometer) solar cells to rival that of thick (~300 micron) cells and to surpass previously suggested statistical ray trapping limits. Strong light concentration by the photonic crystal, augmented by plasmonic resonances near the back mirror, at frequencies below the solar cell electronic band gap enable nonlinear up-conversion of photons. This spectral compression of the solar spectrum paves the way to solar-to-electricity power conversion efficiency by single junction silicon solar cells exceeding 30%. The role of random structural disorder in the photonic crystal solar cells and its influence on overall solar power conversion efficiency will be investigated.* We propose to study a new route to the realization of excitonic coherence and Bose-Einstein condensation at or near room temperature in GaAs multiple quantum well (QW) structures. This involves a new type of quantum cavity enabled by a 3D photonic band gap (PBG) material. The essential scientific advance in this proposal rests on two unique and fundamental properties of PBG materials: (i) By inhibiting radiative recombination of excitons over a specific range of frequencies, it is possible to extend the exciton lifetime well beyond the time scale required to establish thermodynamic equilibrium in a trapped exciton gas. (ii) 3D PBG materials enable stronger, sub-wavelength confinement and focusing of light (without loss), thereby leading to much stronger exciton-photon coupling than achievable with previously studied 1D optical cavities. We will study the nature of quantum many-body correlations in the excitonic Bose condensate and consider the nature of laser-like light emission as the condensate decays radiatively. We propose to design structures that enable ultra-strong coupling between excitons and photons such that equilibrium Bose condensation temperature approaches room temperature. We will work closely with fabrication groups that can synthesize our designed photonic crystal architectures and with experimental optics groups with experience in characterizing excitonic condensates.
我们建议研究光子晶体和相关纳米结构中新颖的和基本的光-物质相互作用。 这些材料的新奇来自于它们以独特的方式捕获光的能力,以及在物质中光子和共振电子激发之间设计超强耦合的能力。 我们建议阐明这些材料的实际应用,太阳能收集,光学信息处理,新型光源,光学生物传感。 我们将与领先的实验和纳米制造团队密切合作,以实现我们的理论和数值模型的预测。 我们建议开发薄膜光子晶体架构的光捕获,吸收和太阳光谱整形在下一代光子学。 我们的努力将集中在光子结构的计算设计,合成和光学测试,改变基本的光子物质相互作用在亚波长尺度。所设计的架构提供了新的范例来控制,捕获和转换太阳能,并压缩太阳能电池内阳光的频率带宽。 我们增强的光捕获和太阳能吸收的基本物理是通过太阳光与光子晶体的慢光模式的耦合,光子晶体在横向于薄膜表面的方向上传播。这对应于光子态密度相对于均匀材料的光子态密度增强的光谱范围。 我们的方法包括集成的渐变抗反射结构与光子晶体的光捕获和吸收。这使得薄膜(< 500纳米)太阳能电池的光吸收能够与厚(~300微米)电池的光吸收相媲美,并超过先前提出的统计射线捕获极限。光子晶体的强光集中,通过后镜附近的等离子体共振增强,在太阳能电池电子带隙以下的频率下,实现光子的非线性上转换。 太阳光谱的这种光谱压缩为单结硅太阳能电池超过30%的太阳能-电力转换效率铺平了道路。将研究光子晶体太阳能电池中随机结构无序的作用及其对整体太阳能转换效率的影响。* 我们提出了一种在室温或室温附近实现GaAs多量子阱结构中激子相干和玻色-爱因斯坦凝聚的新途径。这涉及到一种由3D光子带隙(PBG)材料实现的新型量子腔。 这一提议的基本科学进展取决于光子带隙材料的两个独特和基本性质:(i)通过抑制激子在特定频率范围内的辐射复合,可以将激子寿命延长到远远超过在被捕获的激子气体中建立热力学平衡所需的时间尺度。 (ii)3D PBG材料能够实现更强的亚波长限制和光的聚焦(无损耗),从而导致比先前研究的1D光学腔可实现的强得多的激子-光子耦合。我们将研究激子玻色凝聚体中量子多体关联的性质,并考虑当凝聚体辐射衰变时类激光光发射的性质。我们建议设计的结构,使激子和光子之间的超强耦合,使平衡玻色凝聚温度接近室温。 我们将与能够合成我们设计的光子晶体结构的制造小组以及具有表征激子凝聚体经验的实验光学小组密切合作。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
John, Sajeev其他文献
Fragility of the Schrödinger Cat in thermal environments.
- DOI:
10.1038/s41598-023-45701-3 - 发表时间:
2023-10-31 - 期刊:
- 影响因子:4.6
- 作者:
Bera, Sandip;Yip, Kenny L. S.;John, Sajeev - 通讯作者:
John, Sajeev
Biosensor architecture for enhanced disease diagnostics: lab-in-a-photonic-crystal
用于增强疾病诊断的生物传感器架构:光子晶体实验室
- DOI:
10.1364/oe.24.012166 - 发表时间:
2016-05-30 - 期刊:
- 影响因子:3.8
- 作者:
Feng, Shuai;Jiang, Jian-Hua;John, Sajeev - 通讯作者:
John, Sajeev
Beyond 30% Conversion Efficiency in Silicon Solar Cells: A Numerical Demonstration
- DOI:
10.1038/s41598-019-48981-w - 发表时间:
2019-08-28 - 期刊:
- 影响因子:4.6
- 作者:
Bhattacharya, Sayak;John, Sajeev - 通讯作者:
John, Sajeev
Broadband optical coupling between microstructured fibers and photonic band gap circuits: Two-dimensional paradigms
- DOI:
10.1103/physreva.77.013819 - 发表时间:
2008-01-01 - 期刊:
- 影响因子:2.9
- 作者:
Bauer, James;John, Sajeev - 通讯作者:
John, Sajeev
Topological transitions in continuously deformed photonic crystals
连续变形光子晶体的拓扑转变
- DOI:
10.1103/physrevb.97.085148 - 发表时间:
2018-02-26 - 期刊:
- 影响因子:3.7
- 作者:
Zhu, Xuan;Wang, Hai-Xiao;John, Sajeev - 通讯作者:
John, Sajeev
John, Sajeev的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('John, Sajeev', 18)}}的其他基金
Photonic Crystals, Wave Localization and Applications
光子晶体、波局域化及其应用
- 批准号:
RGPIN-2019-05262 - 财政年份:2022
- 资助金额:
$ 8.23万 - 项目类别:
Discovery Grants Program - Individual
Nominated for the NSERC Herzberg Medal
获得 NSERC 赫茨伯格奖章提名
- 批准号:
549368-2021 - 财政年份:2021
- 资助金额:
$ 8.23万 - 项目类别:
Gerhard Herzberg Canada Gold Medal for Science and Engineering
Photonic Crystals, Wave Localization and Applications
光子晶体、波局域化及其应用
- 批准号:
RGPIN-2019-05262 - 财政年份:2021
- 资助金额:
$ 8.23万 - 项目类别:
Discovery Grants Program - Individual
Photonic Crystals, Wave Localization and Applications
光子晶体、波局域化及其应用
- 批准号:
RGPIN-2019-05262 - 财政年份:2020
- 资助金额:
$ 8.23万 - 项目类别:
Discovery Grants Program - Individual
Photonic Crystals, Wave Localization and Applications
光子晶体、波局域化及其应用
- 批准号:
RGPIN-2019-05262 - 财政年份:2019
- 资助金额:
$ 8.23万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
Baryogenesis, Dark Matter and Nanohertz Gravitational Waves from a Dark
Supercooled Phase Transition
- 批准号:24ZR1429700
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Probing matter-antimatter asymmetry with the muon electric dipole moment
- 批准号:
- 批准年份:2020
- 资助金额:30 万元
- 项目类别:
相似海外基金
Fabrication of chiral plasmonic nanogaps by hot electron-induced metal growth for enhanced enantioselective light-matter interactions
通过热电子诱导金属生长制造手性等离子体纳米间隙以增强对映选择性光-物质相互作用
- 批准号:
23K23191 - 财政年份:2024
- 资助金额:
$ 8.23万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Magnetic Resonances in Nonlinear Dielectric Nanostructures: New Light-Matter Interactions and Machine Learning Enhanced Design
非线性介电纳米结构中的磁共振:新的光-物质相互作用和机器学习增强设计
- 批准号:
2240562 - 财政年份:2023
- 资助金额:
$ 8.23万 - 项目类别:
Standard Grant
Computational modelling of ultrafast chiral light-matter interactions
超快手性光-物质相互作用的计算模型
- 批准号:
2892752 - 财政年份:2023
- 资助金额:
$ 8.23万 - 项目类别:
Studentship
Broadband and tunable enhanced chiral light-matter interactions at the visible with new ultrathin helical metamaterials
新型超薄螺旋超材料在可见光下实现宽带和可调谐增强手性光与物质相互作用
- 批准号:
2224456 - 财政年份:2023
- 资助金额:
$ 8.23万 - 项目类别:
Standard Grant
CAREER: vdW isotope heterostructuring showcased in phononic light-matter interactions
职业生涯:在声子光-物质相互作用中展示 vdW 同位素异质结构
- 批准号:
2238691 - 财政年份:2023
- 资助金额:
$ 8.23万 - 项目类别:
Continuing Grant
Microauscultation devices via acoustic coupling with near-field light-matter interactions
通过声耦合与近场光物质相互作用的微听诊装置
- 批准号:
2314118 - 财政年份:2023
- 资助金额:
$ 8.23万 - 项目类别:
Standard Grant
REU Site: Physics at Kansas State University, Interactions of Matter, Light and Learning
REU 网站:堪萨斯州立大学物理学,物质、光与学习的相互作用
- 批准号:
2244539 - 财政年份:2023
- 资助金额:
$ 8.23万 - 项目类别:
Standard Grant
Light-matter interactions in realistic settings: unifying open quantum systems with macroscopic quantum electrodynamics
现实环境中的光与物质相互作用:将开放量子系统与宏观量子电动力学统一起来
- 批准号:
2888362 - 财政年份:2023
- 资助金额:
$ 8.23万 - 项目类别:
Studentship
Topological Light-Matter Interactions and Optical Forces
拓扑光-物质相互作用和光学力
- 批准号:
2889110 - 财政年份:2023
- 资助金额:
$ 8.23万 - 项目类别:
Studentship
Fabrication of chiral plasmonic nanogaps by hot electron-induced metal growth for enhanced enantioselective light-matter interactions
通过热电子诱导金属生长制造手性等离子体纳米间隙以增强对映选择性光-物质相互作用
- 批准号:
22H01923 - 财政年份:2022
- 资助金额:
$ 8.23万 - 项目类别:
Grant-in-Aid for Scientific Research (B)