Dynamics of driven networks: computation in recurrent neural circuits

驱动网络的动力学:循环神经电路中的计算

基本信息

  • 批准号:
    RGPIN-2018-04821
  • 负责人:
  • 金额:
    $ 1.68万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2018
  • 资助国家:
    加拿大
  • 起止时间:
    2018-01-01 至 2019-12-31
  • 项目状态:
    已结题

项目摘要

The long-term goal of my research is to advance a theory of driven recurrent network computation using mathematical tools from dynamical systems and information theory. ***In this proposal, my goal is to investigate the relationship between network architecture and the variability that emerges within networks driven by external signals.******Networks of neurons —either biological or artificial— are called recurrent if their connections are distributed and contain feedback loops. Such networks can perform remarkably complex computations, as evidenced by their ubiquity throughout the brain and ever-increasing use in machine learning. They are, however, notoriously hard to control and their dynamics are generally poorly understood, especially in the presence of external forcing. This is because recurrent networks are typically chaotic systems, meaning they have rich and sensitive dynamics leading to variable responses to inputs. How do the arrangement and strength of connections affect how severe and distributed chaos is in a network? What is the influence on the way connections are modulated to shape network function? I investigate these questions in three specific research aims directed at both the brain, and artificial networks. Aim 1 investigates how spatially structured connectivity shapes chaotic attractors in both rate and spiking models, and connects theoretical results to the study of cortical circuits. Aim 2 probes how chaos and synaptic plasticity interact to shape recurrent networks, and seeks to predict how artificial inputs from brain-computer interfaces steer motor cortex connectivity in ongoing experiments. Aim 3 develops schemes to take advantage of chaos and chaotic attractors to alter connection weights of artificial networks during training. ******My research program has two complementary objectives: (i) a mathematically rigorous understanding of driven recurrent network dynamics and (ii) the development of an analysis and modelling framework to interpret and guide neuroscience experiments. Both have tangible multidisciplinary applications ranging from the development of implants that can directly communicate with neural circuits in the brain, to the design of artificial neural networks. **
我研究的长期目标是利用动力系统和信息论的数学工具,提出一种驱动递归网络计算的理论。* 在本提案中,我的目标是研究网络架构与外部信号驱动的网络中出现的可变性之间的关系。*神经元网络--无论是生物的还是人工的--如果它们的连接是分布式的,并且包含反馈回路,那么它们就被称为递归的。这样的网络可以执行非常复杂的计算,它们在大脑中无处不在,在机器学习中的使用也越来越多。然而,众所周知,它们很难控制,其动态通常知之甚少,特别是在存在外部强迫的情况下。这是因为递归网络通常是混沌系统,这意味着它们具有丰富而敏感的动态特性,从而导致对输入的可变响应。连接的安排和强度如何影响网络中混乱的严重程度和分布程度?连接被调制以形成网络功能的方式受到什么影响?我调查这些问题在三个具体的研究目标,针对大脑和人工网络。目的1研究空间结构的连通性如何在速率和尖峰模型中形成混沌吸引子,并将理论结果与皮层回路的研究联系起来。目标2探索混沌和突触可塑性如何相互作用以形成循环网络,并试图预测来自脑机接口的人工输入如何在正在进行的实验中引导运动皮层连接。目标3提出了利用混沌和混沌吸引子在训练过程中改变人工网络连接权值的方法。** 我的研究计划有两个互补的目标:(i)对驱动循环网络动力学的数学严格理解;(ii)开发一个分析和建模框架来解释和指导神经科学实验。两者都有实际的多学科应用,从开发可以直接与大脑中的神经回路通信的植入物到设计人工神经网络。**

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lajoie, Guillaume其他文献

EMBEDDING SIGNALS ON GRAPHS WITH UNBALANCED DIFFUSION EARTH MOVER'S DISTANCE.
Hierarchical Bayesian Optimization of Spatiotemporal Neurostimulations for Targeted Motor Outputs
Performance-gated deliberation: A context-adapted strategy in which urgency is opportunity cost.
  • DOI:
    10.1371/journal.pcbi.1010080
  • 发表时间:
    2022-05
  • 期刊:
  • 影响因子:
    4.3
  • 作者:
    Puelma Touzel, Maximilian;Cisek, Paul J.;Lajoie, Guillaume
  • 通讯作者:
    Lajoie, Guillaume
Chaos and reliability in balanced spiking networks with temporal drive
  • DOI:
    10.1103/physreve.87.052901
  • 发表时间:
    2013-05-06
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Lajoie, Guillaume;Lin, Kevin K.;Shea-Brown, Eric
  • 通讯作者:
    Shea-Brown, Eric
Connectome-based reservoir computing with the conn2res toolbox.
  • DOI:
    10.1038/s41467-024-44900-4
  • 发表时间:
    2024-01-22
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    Suarez, Laura E.;Mihalik, Agoston;Milisav, Filip;Marshall, Kenji;Li, Mingze;Vertes, Petra E.;Lajoie, Guillaume;Misic, Bratislav
  • 通讯作者:
    Misic, Bratislav

Lajoie, Guillaume的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lajoie, Guillaume', 18)}}的其他基金

Dynamics of driven networks: computation in recurrent neural circuits
驱动网络的动力学:循环神经电路中的计算
  • 批准号:
    RGPIN-2018-04821
  • 财政年份:
    2022
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Dynamics of driven networks: computation in recurrent neural circuits
驱动网络的动力学:循环神经电路中的计算
  • 批准号:
    RGPIN-2018-04821
  • 财政年份:
    2021
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Dynamics of driven networks: computation in recurrent neural circuits
驱动网络的动力学:循环神经电路中的计算
  • 批准号:
    RGPIN-2018-04821
  • 财政年份:
    2020
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Dynamics of driven networks: computation in recurrent neural circuits
驱动网络的动力学:循环神经电路中的计算
  • 批准号:
    RGPIN-2018-04821
  • 财政年份:
    2019
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Dynamics of driven networks: computation in recurrent neural circuits
驱动网络的动力学:循环神经电路中的计算
  • 批准号:
    DGECR-2018-00276
  • 财政年份:
    2018
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Launch Supplement
Nonlinear dynamics of state transitions and information encoding in stimulus-driven neural networks
刺激驱动神经网络中状态转换的非线性动力学和信息编码
  • 批准号:
    374326-2009
  • 财政年份:
    2010
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Nonlinear dynamics of state transitions and information encoding in stimulus-driven neural networks
刺激驱动神经网络中状态转换的非线性动力学和信息编码
  • 批准号:
    374326-2009
  • 财政年份:
    2009
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Étude en mathématiques appliquées
数学应用研究
  • 批准号:
    332283-2007
  • 财政年份:
    2007
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Étude des sytèmes dynamiques reliés aux ondes électro-biologiques
依赖于电生物学的动力学系统研究
  • 批准号:
    332283-2006
  • 财政年份:
    2006
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Postgraduate Scholarships - Master's

相似国自然基金

Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国青年学者研究基金项目
基于Cache的远程计时攻击研究
  • 批准号:
    60772082
  • 批准年份:
    2007
  • 资助金额:
    28.0 万元
  • 项目类别:
    面上项目

相似海外基金

RUI: Anomalous and motor-driven dynamics in crowded biomimetic networks
RUI:拥挤仿生网络中的异常和电机驱动动力学
  • 批准号:
    2203791
  • 财政年份:
    2022
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Continuing Grant
Dynamics of driven networks: computation in recurrent neural circuits
驱动网络的动力学:循环神经电路中的计算
  • 批准号:
    RGPIN-2018-04821
  • 财政年份:
    2022
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Dynamics of driven networks: computation in recurrent neural circuits
驱动网络的动力学:循环神经电路中的计算
  • 批准号:
    RGPIN-2018-04821
  • 财政年份:
    2021
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Dynamics of driven networks: computation in recurrent neural circuits
驱动网络的动力学:循环神经电路中的计算
  • 批准号:
    RGPIN-2018-04821
  • 财政年份:
    2020
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Dynamics of driven networks: computation in recurrent neural circuits
驱动网络的动力学:循环神经电路中的计算
  • 批准号:
    RGPIN-2018-04821
  • 财政年份:
    2019
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Dynamics of driven networks: computation in recurrent neural circuits
驱动网络的动力学:循环神经电路中的计算
  • 批准号:
    DGECR-2018-00276
  • 财政年份:
    2018
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Launch Supplement
THz-driven low-temperature photoreaction dynamics of hydrogen-bonded networks
太赫兹驱动的氢键网络低温光反应动力学
  • 批准号:
    17K05825
  • 财政年份:
    2017
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Non-equilibrium Fluctuations and Cooperativity in Single-Molecule Dynamics: Going Beyond FluctuationTheorems and Large Deviation Theory: Thermodynamically consistent renewal networks for driven single-molecule dynamics with memory
单分子动力学中的非平衡涨落和协同性:超越涨落定理和大偏差理论:具有记忆驱动的单分子动力学的热力学一致更新网络
  • 批准号:
    316896626
  • 财政年份:
    2017
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Independent Junior Research Groups
IDU Peer Recruitment Dynamics and Network Structure in Respondent Driven Sampling
受访者驱动抽样中的 IDU 同伴招募动态和网络结构
  • 批准号:
    8139582
  • 财政年份:
    2011
  • 资助金额:
    $ 1.68万
  • 项目类别:
IDU Peer Recruitment Dynamics and Network Structure in Respondent Driven Sampling
受访者驱动抽样中的 IDU 同伴招募动态和网络结构
  • 批准号:
    8647307
  • 财政年份:
    2011
  • 资助金额:
    $ 1.68万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了