Fundamental and Statistical Symplectic Topology

基本和统计辛拓扑

基本信息

  • 批准号:
    RGPIN-2017-06566
  • 负责人:
  • 金额:
    $ 1.75万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2018
  • 资助国家:
    加拿大
  • 起止时间:
    2018-01-01 至 2019-12-31
  • 项目状态:
    已结题

项目摘要

From 2004 to 2010, my student Martin Pinsonnault and myself (Silvia Anjos joined us later) discovered what could be considered as the first phase transition in symplectic topology: indeed, we found in some ruled 4-dimensional symplectic manifolds $(M, \omega)$ a critical value $c_{crit}$ for the capacity of balls such that below that value, the infinite dimensional space of symplectic embeddings of the standard 4-ball of given capacity $c < c_{crit}$ inside $(M, \omega)$ retracts on the finite dimensional manifold of symplectic frames on $M$, while beyond that critical value, that space does not retract on any finite dimensional CW complex (it has homology in dimensions as high as we wish). What is spectacular is that the change in homotopy only occurs starting at the $\pi_3$ level, so that this critical value could not have been detected by physicists. This raises three questions: the first one is to understand this phenomenon physically as the expression of uncertainty, which is naturally quantized in our theory. We are looking for a general framework to interpret this phenomenon rigorously as a phase transition. The second question is to try to generalise this to other toric manifolds by using very different techniques. The third and most interesting question is to relate these critical values, which express uncertainty, to other values that express the level of Poisson anti-commutativity of the manifolds.****** This goes in the following way, according to Leonid Polterovich and al., given a symplectic manifold $(M, \omega)$, consider a covering by a finite number of open sets, and a partition of unity $f_1,..., f_k$, and take the sup over $a_1,...,a_k, b_1,...,b_k$ of the norm of the Poisson bracket of $\sum_i a_if_i$ with $\sum_i b_i f_i$ with the only constraint that $a_i, b_i \in [-1,1]$. Then take the inf over all partitions of unity. This gives a number attached to the open cover. The main result is that this number is bounded below by a constant that depends only on the number of open sets. Polterovich conjectured that there should be a positive constant that does not even depend on the number of open subsets. Our goal here is to extend this theory to coverings given by a continuum of open sets, like the one given by a representative of a homotopy class in the $\pi_3$ of the space of symplectic embeddings of balls of given capacity. We have indeed developed a theory of partitions of unity for coverings made of continuous families of open subsets endowed with corresponding functions where sums are replaced by integrals. We can indeed acheive this if Polterovich conjecture is true. There remains to compare critical values in non-commutativity and uncertainty. This project includes also three other substantial problems related to the cluster complex in the Atiyah-Floer conjecture, the Viterbo conjecture and the problem of determining how hard are the foundations of Symplectic Topology.
从2004年到2010年,我和我的学生马丁·平索诺(Silvia Anjos后来加入了我们)发现了辛拓扑中可以被认为是第一个相变的东西:实际上,我们发现在某些规则的四维辛流形中,(M,\omega)$球容量的临界值$c_{crit}$使得低于该值,给定容量c < c_{crit}$的标准4-球的辛嵌入的无穷维空间(M,\omega)$在$M$上的辛框架的有限维流形上收缩,而超过该临界值,这个空间在任何有限维CW复形上都不收缩(它在我们所希望的那么高的维度上具有同调)。令人惊讶的是,同伦的变化只发生在$\pi_3$的水平上,所以这个临界值不可能被物理学家发现。这就提出了三个问题:第一,从物理上把这种现象理解为不确定性的表现,在我们的理论中,这种不确定性是自然量化的。我们正在寻找一个一般的框架来解释这种现象严格作为一个相变。第二个问题是试图推广到其他环面流形使用非常不同的技术。第三个也是最有趣的问题是将这些表示不确定性的临界值与表示流形的泊松反交换性水平的其他值联系起来。 根据Leonid Polterovich和al.,给定一个辛流形$(M,\omega)$,考虑一个有限开集的覆盖,和一个单位分划$f_1,...,f_k$,并将sup取过$a_1,...,a_k,b_1,.,B_k$的泊松括号的范数$\sum_i a_if_i$与$\sum_i B_i f_i$的唯一约束是$a_i,B_i \in [-1,1]$。然后在单位的所有分区上取inf。这给出了一个附在打开的盖子上的数字。主要的结果是,这个数字是由一个常数,只取决于开放集的数量下界。Polterovich解释说,应该有一个积极的常数,甚至不依赖于开放子集的数量。这里我们的目标是将这个理论推广到由连续开集给出的覆盖,就像由同伦类的代表在给定容量的球的辛嵌入空间中给出的覆盖一样。我们确实发展了一个理论分区的单位覆盖连续家庭的开放子集赋予相应的功能,其中总和取代积分。如果Polterovich猜想是正确的,我们确实可以做到这一点。在非对易性和不确定性中,仍然需要比较临界值。这个项目还包括其他三个实质性的问题有关的集群复杂的Atiyah-Floer猜想,在维泰博猜想和问题的确定有多难的基础辛拓扑。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lalonde, François其他文献

Lalonde, François的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lalonde, François', 18)}}的其他基金

Fundamental and Statistical Symplectic Topology
基本和统计辛拓扑
  • 批准号:
    RGPIN-2017-06566
  • 财政年份:
    2022
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Canada Research Chair In Differential Geometry And Topology
加拿大微分几何和拓扑研究主席
  • 批准号:
    CRC-2014-00070
  • 财政年份:
    2021
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Canada Research Chairs
Fundamental and Statistical Symplectic Topology
基本和统计辛拓扑
  • 批准号:
    RGPIN-2017-06566
  • 财政年份:
    2021
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Canada Research Chair in Differential Geometry and Topology
加拿大微分几何和拓扑研究主席
  • 批准号:
    CRC-2014-00070
  • 财政年份:
    2020
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Canada Research Chairs
Fundamental and Statistical Symplectic Topology
基本和统计辛拓扑
  • 批准号:
    RGPIN-2017-06566
  • 财政年份:
    2020
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Canada Research Chair in Differential Geometry and Topology
加拿大微分几何和拓扑研究主席
  • 批准号:
    CRC-2014-00070
  • 财政年份:
    2019
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Canada Research Chairs
Canada Research Chair in Differential Geometry and Topology
加拿大微分几何和拓扑研究主席
  • 批准号:
    CRC-2014-00070
  • 财政年份:
    2018
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Canada Research Chairs
Fundamental and Statistical Symplectic Topology
基本和统计辛拓扑
  • 批准号:
    RGPIN-2017-06566
  • 财政年份:
    2017
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Canada Research Chair in Differential Geometry and Topology
加拿大微分几何和拓扑研究主席
  • 批准号:
    CRC-2014-00070
  • 财政年份:
    2017
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Canada Research Chairs
Canada Research Chair in Differential Geometry and Topology
加拿大微分几何和拓扑研究主席
  • 批准号:
    CRC-2014-00070
  • 财政年份:
    2016
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Canada Research Chairs

相似海外基金

Exploration of the Nonequilibrium Statistical Mechanics of Turbulent Collisionless Plasmas
湍流无碰撞等离子体的非平衡统计力学探索
  • 批准号:
    2409316
  • 财政年份:
    2024
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Continuing Grant
CAREER: Statistical Power Analysis and Optimal Sample Size Planning for Longitudinal Studies in STEM Education
职业:STEM 教育纵向研究的统计功效分析和最佳样本量规划
  • 批准号:
    2339353
  • 财政年份:
    2024
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Continuing Grant
A statistical decision theory of cognitive capacity
认知能力的统计决策理论
  • 批准号:
    DP240101511
  • 财政年份:
    2024
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Projects
PriorCircuit:Circuit mechanisms for computing and exploiting statistical structures in sensory decision making
PriorCircuit:在感官决策中计算和利用统计结构的电路机制
  • 批准号:
    EP/Z000599/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Research Grant
Statistical Foundations for Detecting Anomalous Structure in Stream Settings (DASS)
检测流设置中的异常结构的统计基础 (DASS)
  • 批准号:
    EP/Z531327/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Research Grant
Practical guidance on accessible statistical methods for different estimands in randomised trials
随机试验中不同估计值的可用统计方法的实用指南
  • 批准号:
    MR/Z503770/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Research Grant
CAREER: Statistical foundations of particle tracking and trajectory inference
职业:粒子跟踪和轨迹推断的统计基础
  • 批准号:
    2339829
  • 财政年份:
    2024
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Continuing Grant
Conference: Emerging Statistical and Quantitative Issues in Genomic Research in Health Sciences
会议:健康科学基因组研究中新出现的统计和定量问题
  • 批准号:
    2342821
  • 财政年份:
    2024
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Standard Grant
CAREER: Next-Generation Methods for Statistical Integration of High-Dimensional Disparate Data Sources
职业:高维不同数据源统计集成的下一代方法
  • 批准号:
    2422478
  • 财政年份:
    2024
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Continuing Grant
Modern statistical methods for clustering community ecology data
群落生态数据聚类的现代统计方法
  • 批准号:
    DP240100143
  • 财政年份:
    2024
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Projects
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了