Bifurcations: functional differential equations and waves in inhomogeneous media

分岔:非均匀介质中的泛函微分方程和波

基本信息

  • 批准号:
    RGPIN-2016-04318
  • 负责人:
  • 金额:
    $ 1.31万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2018
  • 资助国家:
    加拿大
  • 起止时间:
    2018-01-01 至 2019-12-31
  • 项目状态:
    已结题

项目摘要

Differential equations are mathematical models that describe many of the phenomena we experience in nature and in our every day lives. Part of my research program involves studying these types of equations, with particular attention to how the solutions of these equations change as external parameters are varied. In mathematical terminology, this is called bifurcation theory. The goal is to use this knowledge in order to provide helpful insight into the physical phenomenon that is being modeled by the differential equations. I am particularly interested in differential equations models which describe the propagation of electrical signals in biological tissue, such as the heart muscle or the neurons that compose the brain and nervous system. In this case, solutions describe waves which propagate in the biological medium. Very simple models for these phenomena suppose that the medium of propagation is uniform (or homogeneous and isotropic). However, reality is much more complicated than that. Imperfections (such as diseased tissue) can lead to pathological conditions, such as re-entrant waves in cardiac tissue. This is a common cause of tachycardia and ventricular fibrillations, conditions which can be fatal. Part of my research program described in this proposal will involve studying the effects of inhomogeneities and/or anisotropy on the propagation of waves in excitable media such as the heart muscle or nervous system.**Closely related to the program described above, I propose to continue studying a special class of differential equations, called delay-differential equations, which are frequently used as models for biological systems in which time-delays are present. The nervous system is a marvelous example of such a system. In this case, there is a time delay involved between the perception of a signal by the sensory organs, transmission of this signal to the brain, its treatment and processing by the brain, and then on to other parts of the body. These equations are also used to model drug delivery in patients, machine chattering of tools, disease outbreaks, vaccination strategies, etc. My efforts in this area have involved developing analytical tools to study these equations, with the goal of shedding light on the behavior of the biological or physical system being modeled by these equations. In the proposal, I describe a program which would extend my past research into the area of structured delay systems. These are models that are frequently used to study populations, and take into account the various stages of development and/or sizes of the population, e.g. juveniles vs adults. **This research program will continue to contribute (as it has in the past) to the advancement of knowledge, and to the scientific training of several undergraduate, masters, doctoral and post-doctoral students, as is described in the proposal.**
微分方程是描述我们在自然界和日常生活中经历的许多现象的数学模型。我的研究计划的一部分涉及研究这些类型的方程,特别注意这些方程的解如何随着外部参数的变化而变化。在数学术语中,这被称为分叉理论。我们的目标是使用这些知识,以便提供有用的洞察力的物理现象,被建模的微分方程。我对微分方程模型特别感兴趣,这些模型描述了电信号在生物组织中的传播,例如心肌或组成大脑和神经系统的神经元。在这种情况下,解描述了在生物介质中传播的波。这些现象的非常简单的模型假设传播介质是均匀的(或均匀和各向同性的)。 然而,现实要比这复杂得多。缺陷(如病变组织)可能导致病理状况,如心脏组织中的折返波。这是心动过速和心室颤动的常见原因,这些情况可能是致命的。我的研究计划的一部分在这个建议中描述,将涉及研究不均匀性和/或各向异性对波在可激发介质(如心肌或神经系统)中传播的影响。与上述程序密切相关,我建议继续研究一类特殊的微分方程,称为延迟微分方程,它经常被用作生物系统的模型,其中存在时间延迟。神经系统就是这种系统的一个很好的例子。在这种情况下,在感觉器官对信号的感知,将该信号传输到大脑,大脑对其进行处理和处理,然后传输到身体的其他部位之间存在时间延迟。这些方程也被用来模拟药物输送在病人,机器抖动的工具,疾病爆发,疫苗接种策略等,我在这方面的努力涉及开发分析工具来研究这些方程,目的是阐明这些方程所模拟的生物或物理系统的行为。在建议中,我描述了一个程序,这将扩展我过去的研究领域的结构延迟系统。这些模型经常用于研究人口,并考虑到人口的各个发展阶段和/或规模,例如青少年与成年人。 ** 正如提案中所述,这项研究计划将继续(像过去一样)为知识的进步做出贡献,并为若干本科生,硕士,博士和博士后学生的科学培训做出贡献。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

LeBlanc, Victor其他文献

LeBlanc, Victor的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('LeBlanc, Victor', 18)}}的其他基金

Bifurcations: functional differential equations and waves in inhomogeneous media
分岔:非均匀介质中的泛函微分方程和波
  • 批准号:
    RGPIN-2016-04318
  • 财政年份:
    2021
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Bifurcations: functional differential equations and waves in inhomogeneous media
分岔:非均匀介质中的泛函微分方程和波
  • 批准号:
    RGPIN-2016-04318
  • 财政年份:
    2017
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Bifurcations: functional differential equations and waves in inhomogeneous media
分岔:非均匀介质中的泛函微分方程和波
  • 批准号:
    RGPIN-2016-04318
  • 财政年份:
    2016
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Bifurcations: traveling waves in reaction-diffusion systems, and realizability for delay differential equations
分岔:反应扩散系统中的行波以及延迟微分方程的可实现性
  • 批准号:
    194296-2010
  • 财政年份:
    2015
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Bifurcations: traveling waves in reaction-diffusion systems, and realizability for delay differential equations
分岔:反应扩散系统中的行波以及延迟微分方程的可实现性
  • 批准号:
    194296-2010
  • 财政年份:
    2014
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Bifurcations: traveling waves in reaction-diffusion systems, and realizability for delay differential equations
分岔:反应扩散系统中的行波以及延迟微分方程的可实现性
  • 批准号:
    194296-2010
  • 财政年份:
    2012
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Bifurcations: traveling waves in reaction-diffusion systems, and realizability for delay differential equations
分岔:反应扩散系统中的行波以及延迟微分方程的可实现性
  • 批准号:
    194296-2010
  • 财政年份:
    2011
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Bifurcations: traveling waves in reaction-diffusion systems, and realizability for delay differential equations
分岔:反应扩散系统中的行波以及延迟微分方程的可实现性
  • 批准号:
    194296-2010
  • 财政年份:
    2010
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Dynamics of spiral and scroll waves, and bifurcations in retarded functional differential equations
螺旋波和滚动波的动力学以及延迟泛函微分方程中的分岔
  • 批准号:
    194296-2004
  • 财政年份:
    2009
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Dynamics of spiral and scroll waves, and bifurcations in retarded functional differential equations
螺旋波和滚动波的动力学以及延迟泛函微分方程中的分岔
  • 批准号:
    194296-2004
  • 财政年份:
    2007
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

Got2基因对浆细胞样树突状细胞功能的调控及其在系统性红斑狼疮疾病中的作用研究
  • 批准号:
    82371801
  • 批准年份:
    2023
  • 资助金额:
    47.00 万元
  • 项目类别:
    面上项目
利用CRISPR内源性激活Atoh1转录促进前庭毛细胞再生和功能重建
  • 批准号:
    82371145
  • 批准年份:
    2023
  • 资助金额:
    46.00 万元
  • 项目类别:
    面上项目
SMC5-NSMCE2功能异常激活APSCs中p53/p16衰老通路导致脂肪萎缩和胰岛素抵抗的机制研究
  • 批准号:
    82371873
  • 批准年份:
    2023
  • 资助金额:
    50.00 万元
  • 项目类别:
    面上项目
基于再生运动神经路径优化Agrin作用促进损伤神经靶向投射的功能研究
  • 批准号:
    82371373
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
HK2乳酰化修饰介导巨噬细胞功能障碍在脓毒症中的作用及机制
  • 批准号:
    82372160
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
基于密度泛函理论金原子簇放射性药物设计、制备及其在肺癌诊疗中的应用研究
  • 批准号:
    82371997
  • 批准年份:
    2023
  • 资助金额:
    48.00 万元
  • 项目类别:
    面上项目
LTB4/BLT1轴调控NLRP3炎症小体对糖尿病认知功能障碍的作用研究
  • 批准号:
    82371213
  • 批准年份:
    2023
  • 资助金额:
    47.00 万元
  • 项目类别:
    面上项目
OBSL1功能缺失导致多指(趾)畸形的分子机制及其临床诊断价值
  • 批准号:
    82372328
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
浸润特性调制的统计热力学研究
  • 批准号:
    21173271
  • 批准年份:
    2011
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目

相似海外基金

Bifurcations: functional differential equations and waves in inhomogeneous media
分岔:非均匀介质中的泛函微分方程和波
  • 批准号:
    RGPIN-2016-04318
  • 财政年份:
    2021
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Bifurcations: functional differential equations and waves in inhomogeneous media
分岔:非均匀介质中的泛函微分方程和波
  • 批准号:
    RGPIN-2016-04318
  • 财政年份:
    2019
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Bifurcations: functional differential equations and waves in inhomogeneous media
分岔:非均匀介质中的泛函微分方程和波
  • 批准号:
    RGPIN-2016-04318
  • 财政年份:
    2017
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Bifurcations: functional differential equations and waves in inhomogeneous media
分岔:非均匀介质中的泛函微分方程和波
  • 批准号:
    RGPIN-2016-04318
  • 财政年份:
    2016
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Dynamics of spiral and scroll waves, and bifurcations in retarded functional differential equations
螺旋波和滚动波的动力学以及延迟泛函微分方程中的分岔
  • 批准号:
    194296-2004
  • 财政年份:
    2009
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Dynamics of spiral and scroll waves, and bifurcations in retarded functional differential equations
螺旋波和滚动波的动力学以及延迟泛函微分方程中的分岔
  • 批准号:
    194296-2004
  • 财政年份:
    2007
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Dynamics of spiral and scroll waves, and bifurcations in retarded functional differential equations
螺旋波和滚动波的动力学以及延迟泛函微分方程中的分岔
  • 批准号:
    194296-2004
  • 财政年份:
    2006
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Dynamics of spiral and scroll waves, and bifurcations in retarded functional differential equations
螺旋波和滚动波的动力学以及延迟泛函微分方程中的分岔
  • 批准号:
    194296-2004
  • 财政年份:
    2005
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Dynamics of spiral and scroll waves, and bifurcations in retarded functional differential equations
螺旋波和滚动波的动力学以及延迟泛函微分方程中的分岔
  • 批准号:
    194296-2004
  • 财政年份:
    2004
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Asymptotic behaviors and hoft bifurcations of functional differential equations
泛函微分方程的渐近行为和hoft分岔
  • 批准号:
    105588-1991
  • 财政年份:
    1993
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了