Improving Information Retrieval with Machine Learning
通过机器学习改进信息检索
基本信息
- 批准号:46392-2012
- 负责人:
- 金额:$ 2.48万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2018
- 资助国家:加拿大
- 起止时间:2018-01-01 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Information retrieval (IR) systems including various search engines have played important roles in our life. They include general web search engines (such as Google), vertical search engines (such as product search in Amazon.com), specific media search (such as image search), and so on. In the past years I have made fruitful and significant contributions in several important areas of machine learning. The objectives of this research program are to expand my research in machine learning, and leverage it to improve the performance and user experience of IR systems for people to easily obtain highly accurate and useful information.**One important question we will study in this research program is how hierarchies can be used to effectively improve search accuracy and user experience. Hierarchies or taxonomies on topics, genres, media types, and so on, are natural to human and important in organizing human knowledge. It would be ideal if keyword search and hierarchical browsing (roll-up and drill-down) can be seamlessly integrated. For example, searching "china" in the art category will remove ambiguity of china as the country. However, this has not been done in web search engines (such as Google), because billions of webpages must be classified into hierarchies by machine learning (i.e., not by human as in DMOZ, the Open Directory Project). Other fascinating research challenges include: how can active learning with generalized queries (our work) improve relevance feedback in IR? How can we utilize many "cheap" labellers (such as Amazon Mechanical Turk) in active learning of hierarchies? How can we learn from behaviours and cognitive models of users of IR systems? **The outcome and impact of our research program will be fruitful and significant. First of all, it will greatly advance both machine learning and IR research. We will continue to publish top-rated conference and journal papers. Second, we will build prototypes of advanced IR systems and search engines with machine learning techniques. Third, we will improve usability of our IR prototypes in large-scale user studies. Our ultimate objective of this research is to make it easy for people to obtain highly accurate and useful information.******
包括各种搜索引擎在内的信息检索系统在人们的生活中扮演着重要的角色。这些搜索引擎包括通用网络搜索引擎(如Google)、垂直搜索引擎(如Amazon.com中的产品搜索)、特定媒体搜索(如图像搜索)等等。在过去的几年里,我在机器学习的几个重要领域做出了卓有成效的重大贡献。这个研究项目的目标是扩大我在机器学习方面的研究,并利用它来改善IR系统的性能和用户体验,让人们轻松获得高度准确和有用的信息。我们将在这个研究计划中研究的一个重要问题是如何使用层次结构来有效地提高搜索准确性和用户体验。关于主题、流派、媒体类型等的层次或分类对人类来说是自然的,并且在组织人类知识方面很重要。如果关键字搜索和分层浏览(上滚和下钻)可以无缝集成,那将是理想的。例如,在艺术类别中搜索“中国”将消除中国作为国家的歧义。然而,这在网络搜索引擎(例如Google)中还没有完成,因为数十亿个网页必须通过机器学习分类到层次结构中(即,而不是像DMOZ,开放目录项目中那样由人类完成)。其他迷人的研究挑战包括:如何主动学习与广义查询(我们的工作)提高相关反馈IR?我们如何利用许多“便宜”的标签(如亚马逊土耳其机器人)来主动学习层次结构?我们如何从IR系统用户的行为和认知模型中学习?** 我们的研究计划的成果和影响将是富有成效的和显著的。首先,它将极大地推动机器学习和IR研究。我们将继续发表一流的会议和期刊论文。其次,我们将使用机器学习技术构建先进的IR系统和搜索引擎的原型。第三,我们将在大规模用户研究中提高IR原型的可用性。我们这项研究的最终目标是让人们更容易获得高度准确和有用的信息。*****
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ling, Charles其他文献
Ling, Charles的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ling, Charles', 18)}}的其他基金
Reducing Training Data in Deep Learning
减少深度学习中的训练数据
- 批准号:
RGPIN-2019-06222 - 财政年份:2022
- 资助金额:
$ 2.48万 - 项目类别:
Discovery Grants Program - Individual
Reducing Training Data in Deep Learning
减少深度学习中的训练数据
- 批准号:
RGPIN-2019-06222 - 财政年份:2021
- 资助金额:
$ 2.48万 - 项目类别:
Discovery Grants Program - Individual
Reducing Training Data in Deep Learning
减少深度学习中的训练数据
- 批准号:
RGPAS-2019-00084 - 财政年份:2020
- 资助金额:
$ 2.48万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Reducing Training Data in Deep Learning
减少深度学习中的训练数据
- 批准号:
RGPIN-2019-06222 - 财政年份:2020
- 资助金额:
$ 2.48万 - 项目类别:
Discovery Grants Program - Individual
Reducing Training Data in Deep Learning
减少深度学习中的训练数据
- 批准号:
RGPIN-2019-06222 - 财政年份:2019
- 资助金额:
$ 2.48万 - 项目类别:
Discovery Grants Program - Individual
Reducing Training Data in Deep Learning
减少深度学习中的训练数据
- 批准号:
RGPAS-2019-00084 - 财政年份:2019
- 资助金额:
$ 2.48万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Improving Information Retrieval with Machine Learning
通过机器学习改进信息检索
- 批准号:
46392-2012 - 财政年份:2017
- 资助金额:
$ 2.48万 - 项目类别:
Discovery Grants Program - Individual
Improving Highstreet's Assets Model with Advanced Machine Learning
利用先进的机器学习改进 Highstreet 的资产模型
- 批准号:
501559-2016 - 财政年份:2016
- 资助金额:
$ 2.48万 - 项目类别:
Engage Plus Grants Program
Improving Information Retrieval with Machine Learning
通过机器学习改进信息检索
- 批准号:
46392-2012 - 财政年份:2015
- 资助金额:
$ 2.48万 - 项目类别:
Discovery Grants Program - Individual
Improving customer service with predictive models for IBM London Software Lab
利用 IBM 伦敦软件实验室的预测模型改善客户服务
- 批准号:
491890-2015 - 财政年份:2015
- 资助金额:
$ 2.48万 - 项目类别:
Engage Grants Program
相似国自然基金
Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国青年学者研究基金项目
Exploring the Intrinsic Mechanisms of CEO Turnover and Market Reaction: An Explanation Based on Information Asymmetry
- 批准号:W2433169
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
SCIENCE CHINA Information Sciences
- 批准号:61224002
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
相似海外基金
Improving the Complexity of Robust Private Information Retrieval
提高稳健的私人信息检索的复杂性
- 批准号:
553949-2020 - 财政年份:2020
- 资助金额:
$ 2.48万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Improving Retrieval of Unstructured Information using existing Information Structures
使用现有信息结构改进非结构化信息的检索
- 批准号:
RGPIN-2014-06292 - 财政年份:2019
- 资助金额:
$ 2.48万 - 项目类别:
Discovery Grants Program - Individual
Improving Retrieval of Unstructured Information using existing Information Structures
使用现有信息结构改进非结构化信息的检索
- 批准号:
RGPIN-2014-06292 - 财政年份:2018
- 资助金额:
$ 2.48万 - 项目类别:
Discovery Grants Program - Individual
Improving Information Retrieval with Machine Learning
通过机器学习改进信息检索
- 批准号:
46392-2012 - 财政年份:2017
- 资助金额:
$ 2.48万 - 项目类别:
Discovery Grants Program - Individual
Improving Retrieval of Unstructured Information using existing Information Structures
使用现有信息结构改进非结构化信息的检索
- 批准号:
RGPIN-2014-06292 - 财政年份:2017
- 资助金额:
$ 2.48万 - 项目类别:
Discovery Grants Program - Individual
Improving Retrieval of Unstructured Information using existing Information Structures
使用现有信息结构改进非结构化信息的检索
- 批准号:
RGPIN-2014-06292 - 财政年份:2016
- 资助金额:
$ 2.48万 - 项目类别:
Discovery Grants Program - Individual
Improving Information Retrieval with Machine Learning
通过机器学习改进信息检索
- 批准号:
46392-2012 - 财政年份:2015
- 资助金额:
$ 2.48万 - 项目类别:
Discovery Grants Program - Individual
Improving Retrieval of Unstructured Information using existing Information Structures
使用现有信息结构改进非结构化信息的检索
- 批准号:
RGPIN-2014-06292 - 财政年份:2015
- 资助金额:
$ 2.48万 - 项目类别:
Discovery Grants Program - Individual
Improving Information Retrieval with Machine Learning
通过机器学习改进信息检索
- 批准号:
46392-2012 - 财政年份:2014
- 资助金额:
$ 2.48万 - 项目类别:
Discovery Grants Program - Individual
Improving Retrieval of Unstructured Information using existing Information Structures
使用现有信息结构改进非结构化信息的检索
- 批准号:
RGPIN-2014-06292 - 财政年份:2014
- 资助金额:
$ 2.48万 - 项目类别:
Discovery Grants Program - Individual