Parallel Algorithms for Polynomials
多项式的并行算法
基本信息
- 批准号:RGPIN-2014-04238
- 负责人:
- 金额:$ 2.33万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2018
- 资助国家:加拿大
- 起止时间:2018-01-01 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This research proposal is about designing and implementing algorithms for computing with mathematical formulas.*It focusses on computing with large polynomials in more than one variable and with large formulas involving algebraic*numbers like sqrt(2) and algebraic functions and sqrt(1+y^2).*Such formulas arise in many applications in Science, Engineering and Mathematics.**This research is part of a field known as Computer Algebra. It is also known as Symbolic Computation.*Researchers in this field design algorithms and software systems, called Computer Algebra Systems,*for doing algebra and calculus on the computer. Computer Algebra Systems like Maple and Mathematica are used by*Scientists, Engineers and Mathematicians in both industry and academia for their work. The researcher on this*proposal has been and continues to be involved with the design and development of Maple which is a Canadian product.**A focus of the proposal is the development and implementation of parallel algorithms.*This is because today's laptops, desktops and servers are all multi-core computers and*the only way now to improve performance of software is to exploit their multi-core*processing capability. We propose to use Cilk for implementing parallel algorithms.*Cilk was developed at MIT and has now been adopted by Intel. We also propose to begin*experimenting with using Graphics Processing Units (GPUs) for implementing algorithms.**A second focus of the research is how to interpolate, that is, how to reconstruct*polynomials and rational functions in more than one variable from their values.*Often formulas involving many variables are sparse and have structure.*We propose to try to automate the detection of this structure so we can interpolate them rapidly.**Some of the software we develop in this research will be written in Maple and some will be written in C and/or Cilk.*We do plan to make it available to the Maple user community so that Scientists, Engineers and Mathematicians can use it.*For the students working on these projects, it is very encouraging for them to see other people using their software.**Students who work on the research projects in this proposal will learn how to design and implement algorithms*for solving various problems in computational mathematics like factoring polynomials and fast algorithms for solving*problems involving matrices. They will learn how to design and implement parallel algorithms using Cilk.*They will be learning mathematics (e.g. about algebraic numbers) and computer science*(e.g. how to analyze the efficiency of algorithms.)
本研究计划是关于设计和实现使用数学公式进行计算的算法。它专注于计算多个变量的大型多项式和涉及代数 * 数的大型公式,如sqrt(2)和代数函数和sqrt(1+y^2)。这样的公式在科学、工程和数学中有许多应用。这项研究是计算机代数领域的一部分。 它也被称为符号计算。该领域的研究人员设计算法和软件系统,称为计算机代数系统 *,用于在计算机上进行代数和微积分。 像Maple和Mathematica这样的计算机代数系统被工业界和学术界的科学家、工程师和数学家用于他们的工作。 这项建议的研究人员一直并将继续参与加拿大产品Maple的设计和开发。该提案的重点是并行算法的开发和实现。*这是因为今天的笔记本电脑、台式机和服务器都是多核计算机,* 现在提高软件性能的唯一方法就是利用它们的多核 * 处理能力。 我们建议使用Cilk来实现并行算法。Cilk是在麻省理工学院开发的,现在已经被英特尔采用。 我们还建议开始 * 试验使用图形处理器(GPU)实现算法。**研究的第二个焦点是如何插值,即如何从多项式和有理函数的值重构多个变量的多项式和有理函数。通常,涉及许多变量的公式是稀疏的,并且具有结构。我们建议尝试自动检测这种结构,以便我们可以快速插入它们。我们在这项研究中开发的一些软件将用Maple编写,一些将用C和/或Cilk编写。我们确实计划将其提供给Maple用户社区,以便科学家、工程师和数学家可以使用它。*对于从事这些项目的学生来说,看到其他人使用他们的软件对他们来说是非常鼓舞人心的。谁在这个建议的研究项目工作的学生将学习如何设计和实现算法 * 解决计算数学中的各种问题,如分解多项式和快速算法解决 * 涉及矩阵的问题。 他们将学习如何使用Cilk设计和实现并行算法。*他们将学习数学(例如代数数)和计算机科学(例如如何分析算法的效率)。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Monagan, Michael其他文献
Monagan, Michael的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Monagan, Michael', 18)}}的其他基金
Fast Algorithms and Libraries for Polynomials.
多项式的快速算法和库。
- 批准号:
RGPIN-2019-04441 - 财政年份:2022
- 资助金额:
$ 2.33万 - 项目类别:
Discovery Grants Program - Individual
Fast Algorithms and Libraries for Polynomials.
多项式的快速算法和库。
- 批准号:
RGPIN-2019-04441 - 财政年份:2021
- 资助金额:
$ 2.33万 - 项目类别:
Discovery Grants Program - Individual
Fast Algorithms and Libraries for Polynomials.
多项式的快速算法和库。
- 批准号:
RGPIN-2019-04441 - 财政年份:2020
- 资助金额:
$ 2.33万 - 项目类别:
Discovery Grants Program - Individual
Fast Algorithms and Libraries for Polynomials.
多项式的快速算法和库。
- 批准号:
RGPIN-2019-04441 - 财政年份:2019
- 资助金额:
$ 2.33万 - 项目类别:
Discovery Grants Program - Individual
Parallel Algorithms for Polynomials
多项式的并行算法
- 批准号:
RGPIN-2014-04238 - 财政年份:2017
- 资助金额:
$ 2.33万 - 项目类别:
Discovery Grants Program - Individual
Parallel algorithms, data structures and libraries for polynomials
多项式的并行算法、数据结构和库
- 批准号:
437389-2012 - 财政年份:2016
- 资助金额:
$ 2.33万 - 项目类别:
Collaborative Research and Development Grants
Parallel Algorithms for Polynomials
多项式的并行算法
- 批准号:
RGPIN-2014-04238 - 财政年份:2016
- 资助金额:
$ 2.33万 - 项目类别:
Discovery Grants Program - Individual
Parallel Algorithms for Polynomials
多项式的并行算法
- 批准号:
RGPIN-2014-04238 - 财政年份:2015
- 资助金额:
$ 2.33万 - 项目类别:
Discovery Grants Program - Individual
Parallel algorithms, data structures and libraries for polynomials
多项式的并行算法、数据结构和库
- 批准号:
437389-2012 - 财政年份:2014
- 资助金额:
$ 2.33万 - 项目类别:
Collaborative Research and Development Grants
Parallel Algorithms for Polynomials
多项式的并行算法
- 批准号:
RGPIN-2014-04238 - 财政年份:2014
- 资助金额:
$ 2.33万 - 项目类别:
Discovery Grants Program - Individual
相似海外基金
Parallel Algorithms in Support of Factorization of Polynomials and Integers
支持多项式和整数因式分解的并行算法
- 批准号:
539741-2019 - 财政年份:2019
- 资助金额:
$ 2.33万 - 项目类别:
University Undergraduate Student Research Awards
Parallel Algorithms for Polynomials
多项式的并行算法
- 批准号:
RGPIN-2014-04238 - 财政年份:2017
- 资助金额:
$ 2.33万 - 项目类别:
Discovery Grants Program - Individual
Parallel algorithms, data structures and libraries for polynomials
多项式的并行算法、数据结构和库
- 批准号:
437389-2012 - 财政年份:2016
- 资助金额:
$ 2.33万 - 项目类别:
Collaborative Research and Development Grants
Parallel Algorithms for Polynomials
多项式的并行算法
- 批准号:
RGPIN-2014-04238 - 财政年份:2016
- 资助金额:
$ 2.33万 - 项目类别:
Discovery Grants Program - Individual
Parallel Algorithms for Polynomials
多项式的并行算法
- 批准号:
RGPIN-2014-04238 - 财政年份:2015
- 资助金额:
$ 2.33万 - 项目类别:
Discovery Grants Program - Individual
Parallel algorithms, data structures and libraries for polynomials
多项式的并行算法、数据结构和库
- 批准号:
437389-2012 - 财政年份:2014
- 资助金额:
$ 2.33万 - 项目类别:
Collaborative Research and Development Grants
Parallel Algorithms for Polynomials
多项式的并行算法
- 批准号:
RGPIN-2014-04238 - 财政年份:2014
- 资助金额:
$ 2.33万 - 项目类别:
Discovery Grants Program - Individual
Parallel algorithms, data structures and libraries for polynomials
多项式的并行算法、数据结构和库
- 批准号:
437389-2012 - 财政年份:2013
- 资助金额:
$ 2.33万 - 项目类别:
Collaborative Research and Development Grants
Parallel algorithms, data structures and libraries for polynomials
多项式的并行算法、数据结构和库
- 批准号:
437389-2012 - 财政年份:2012
- 资助金额:
$ 2.33万 - 项目类别:
Collaborative Research and Development Grants
Algorithms (Sequential and Parallel) For the Simultaneous Approximation of Zeros of Polynomials
同时逼近多项式零点的算法(顺序和并行)
- 批准号:
7410042 - 财政年份:1975
- 资助金额:
$ 2.33万 - 项目类别:
Standard Grant