Graphs and Games
图表和游戏
基本信息
- 批准号:RGPIN-2014-04139
- 负责人:
- 金额:$ 2.04万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2018
- 资助国家:加拿大
- 起止时间:2018-01-01 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Playing games is one of the oldest human intellectual activities but is only within the last 100 years that mathematics has offered any real insights. Most of mathematics deals with `nature' or it describes ongoing situations. The mathematics of games has to take in to account an intelligent opponent. For example, consider the problems of capturing an intruder who is fleeing pursuers in a system of passageways. If the intruder is much faster than the pursuers this can be used as a model for decontaminating the passageways from chemical or biological spills. The worst-case scenario is that the contaminant/intruder is an intelligent adversary! The main goal is to identify good strategies that humans can understand and implement. There has been great success in the game theory originating in the fields of economics, biology and psychology where there are many players, simultaneous moves and hidden information. This has been useful in pure strategy games such as Chess, Checkers and Hex. Only in the last 40 years has the foundations of a mathematical theory for "last-player-to-move-wins" games (e.g., Chess, Checkers and Go) been laid. In these cases, even identifying an `infinitesimal' (i.e. a very, very small edge) in a game can gain a move that could earn extra money for professional players. This research will identify and exploit the hidden structures in these games to obtain good strategies. This research will also extend the techniques from both the last-player-to-move and economic game theories to consider pure strategy, scoring games (e.g., Dots-and-Boxes and Reversi).
玩游戏是人类最古老的智力活动之一,但直到最近100年,数学才提供了任何真实的见解。大多数数学都涉及“自然”,或者描述正在发生的情况。游戏的数学必须考虑到一个聪明的对手。例如,考虑在通道系统中捕获正在逃离追捕者的入侵者的问题。如果入侵者比追赶者快得多,这可以用作净化通道的化学或生物泄漏的模型。最坏的情况是,污染物/入侵者是一个聪明的对手!主要目标是确定人类可以理解和实施的良好策略。博弈论起源于经济学、生物学和心理学领域,在博弈论中有许多参与者,同时行动和隐藏信息。这在纯粹的策略游戏中很有用,比如国际象棋、象棋和十六进制。只有在过去的40年里,“最后一个移动的玩家获胜”游戏的数学理论才有了基础(例如,国际象棋、象棋和围棋)已经下好了。在这些情况下,即使在游戏中识别出一个“无穷小”(即一个非常非常小的优势),也可以获得一个可以为职业玩家赚取额外金钱的移动。这项研究将识别和利用这些游戏中隐藏的结构,以获得良好的战略。这项研究还将扩展技术,从最后一个球员移动和经济博弈理论考虑纯战略,得分游戏(例如,点和框和反转)。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nowakowski, Richard其他文献
Nowakowski, Richard的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nowakowski, Richard', 18)}}的其他基金
Games and Graphs
游戏和图表
- 批准号:
RGPIN-2019-04914 - 财政年份:2022
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Games and Graphs
游戏和图表
- 批准号:
RGPIN-2019-04914 - 财政年份:2021
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Games and Graphs
游戏和图表
- 批准号:
RGPIN-2019-04914 - 财政年份:2020
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Games and Graphs
游戏和图表
- 批准号:
RGPIN-2019-04914 - 财政年份:2019
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Graphs and Games
图表和游戏
- 批准号:
RGPIN-2014-04139 - 财政年份:2017
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Graphs and Games
图表和游戏
- 批准号:
RGPIN-2014-04139 - 财政年份:2016
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Graphs and Games
图表和游戏
- 批准号:
RGPIN-2014-04139 - 财政年份:2015
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Graphs and Games
图表和游戏
- 批准号:
RGPIN-2014-04139 - 财政年份:2014
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
Graphon mean field games with partial observation and application to failure detection in distributed systems
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
Games and Graphs
游戏和图表
- 批准号:
RGPIN-2019-04914 - 财政年份:2022
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Games and Graphs
游戏和图表
- 批准号:
RGPIN-2019-04914 - 财政年份:2021
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
CAREER: Stochastic Games on Large Graphs in the Mean Field Regime and Beyond
职业:平均场制度及其他大图上的随机博弈
- 批准号:
2045328 - 财政年份:2021
- 资助金额:
$ 2.04万 - 项目类别:
Continuing Grant
Games and Graphs
游戏和图表
- 批准号:
RGPIN-2019-04914 - 财政年份:2020
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Distributed Multi-agent Continuous-time Optimization: Unbalanced Directed Graphs and Constrained Networked Games
分布式多智能体连续时间优化:不平衡有向图和约束网络博弈
- 批准号:
1920798 - 财政年份:2019
- 资助金额:
$ 2.04万 - 项目类别:
Standard Grant
Games and Graphs
游戏和图表
- 批准号:
RGPIN-2019-04914 - 财政年份:2019
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Games and graphs
游戏和图表
- 批准号:
539419-2019 - 财政年份:2019
- 资助金额:
$ 2.04万 - 项目类别:
University Undergraduate Student Research Awards
Games and graphs
游戏和图表
- 批准号:
539856-2019 - 财政年份:2019
- 资助金额:
$ 2.04万 - 项目类别:
University Undergraduate Student Research Awards
Domination and Colouring Games in Graphs
图表中的统治和着色游戏
- 批准号:
RGPIN-2014-06571 - 财政年份:2018
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Strategies of games on graphs and games with onlineness
图博弈和在线博弈策略
- 批准号:
18K11601 - 财政年份:2018
- 资助金额:
$ 2.04万 - 项目类别:
Grant-in-Aid for Scientific Research (C)