Mathematical and Quantitative Aspects in Behavioural Finance Problems

行为金融问题的数学和定量方面

基本信息

  • 批准号:
    RGPIN-2014-06452
  • 负责人:
  • 金额:
    $ 1.02万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2018
  • 资助国家:
    加拿大
  • 起止时间:
    2018-01-01 至 2019-12-31
  • 项目状态:
    已结题

项目摘要

In his seminal paper 'Real Options' Steward Myers pointed out that that real (as opposed to financial) investment decisions had similarities with the decision to exercise a financial option. Consequently, developments from finance can be used to evaluate real investment projects and to guide investment decisions. Real options have a wide applicability in the area of natural resources and the environment (energy, biodivesity protection, resource management). One goal of this proposal is to real options under hyperbolic time discounting. Because of its empirical, hyperbolic discounting has received a lot of attention lately. Financial markets are going through a crisis. In recent years, safe investments delivered unusually low returns, and financial institutions seeking big returns traded extremely complicated instruments. Many of these instruments received investment-grade ratings, and their returns were significantly greater than investing in riskless instruments. The law that higher returns mean higher risk seemed to have been overlooked. The following combination of factors: 1) high leverage 2) risk underestimation and 3) inefficient loss control, contributed to the financial crises.*Another goal of this proposal is to consider and to examine financial models to account for these factors. The outcome of this proposal will be interesting to the academic communities in Mathematics, Finance, Economics, Management Science and Operations Research. It will also be important to banks, financial corporations, financial industry, society and government of Canada.
Steward Myers 在他的开创性论文“实物期权”中指出,实物(相对于金融)投资决策与行使金融期权的决策有相似之处。因此,金融的发展可用于评估实际投资项目并指导投资决策。实物期权在自然资源和环境领域(能源、生物多样性保护、资源管理)具有广泛的适用性。该提案的目标之一是双曲线时间贴现下的实物期权。由于其实证性,双曲线贴现最近受到了很多关注。金融市场正在经历一场危机。近年来,安全投资的回报率异常低,而寻求高回报的金融机构则交易极其复杂的工具。其中许多工具获得了投资级评级,其回报明显高于投资无风险工具。高回报意味着高风险的定律似乎被忽视了。以下因素组合:1) 高杠杆率 2) 风险低估和 3) 低效损失控制,导致了金融危机。*本提案的另一个目标是考虑和检查财务模型以解释这些因素。该提案的结果将引起数学、金融、经济学、管理科学和运筹学学术界的兴趣。这对于加拿大的银行、金融公司、金融业、社会和政府也很重要。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Pirvu, Traian其他文献

Pirvu, Traian的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Pirvu, Traian', 18)}}的其他基金

Mathematical Modelling and Problem Solving in Finance and Insurance
金融和保险中的数学建模和问题解决
  • 批准号:
    RGPIN-2019-05397
  • 财政年份:
    2022
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Mathematical Modelling and Problem Solving in Finance and Insurance
金融和保险中的数学建模和问题解决
  • 批准号:
    RGPIN-2019-05397
  • 财政年份:
    2021
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Mathematical Modelling and Problem Solving in Finance and Insurance
金融和保险中的数学建模和问题解决
  • 批准号:
    RGPIN-2019-05397
  • 财政年份:
    2020
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Mathematical Modelling and Problem Solving in Finance and Insurance
金融和保险中的数学建模和问题解决
  • 批准号:
    RGPIN-2019-05397
  • 财政年份:
    2019
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Mathematical and Quantitative Aspects in Behavioural Finance Problems
行为金融问题的数学和定量方面
  • 批准号:
    RGPIN-2014-06452
  • 财政年份:
    2017
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Mathematical and Quantitative Aspects in Behavioural Finance Problems
行为金融问题的数学和定量方面
  • 批准号:
    RGPIN-2014-06452
  • 财政年份:
    2016
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Mathematical and Quantitative Aspects in Behavioural Finance Problems
行为金融问题的数学和定量方面
  • 批准号:
    RGPIN-2014-06452
  • 财政年份:
    2015
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Mathematical and Quantitative Aspects in Behavioural Finance Problems
行为金融问题的数学和定量方面
  • 批准号:
    RGPIN-2014-06452
  • 财政年份:
    2014
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
On securitization and equilbrium pricing in incomplete markets
不完全市场中的证券化与均衡定价
  • 批准号:
    371653-2009
  • 财政年份:
    2013
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
On securitization and equilbrium pricing in incomplete markets
论不完全市场的证券化与均衡定价
  • 批准号:
    371653-2009
  • 财政年份:
    2012
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual

相似海外基金

Quantitative Aspects of Arithmetic Statistics
算术统计的定量方面
  • 批准号:
    2101874
  • 财政年份:
    2021
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Standard Grant
Investigating Relationship Between Aspects of A Gene Regulatory Network and Quantitative Crop Traits
研究基因调控网络各方面与作物数量性状之间的关系
  • 批准号:
    2391886
  • 财政年份:
    2020
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Studentship
Quantitative, Computational, and Stochastic Aspects of Topology
拓扑的定量、计算和随机方面
  • 批准号:
    1906516
  • 财政年份:
    2019
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Standard Grant
Quantitative aspects of number theory
数论的定量方面
  • 批准号:
    2291558
  • 财政年份:
    2019
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Studentship
Quantitative, Computational, and Stochastic Aspects of Topology
拓扑的定量、计算和随机方面
  • 批准号:
    2001042
  • 财政年份:
    2019
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Standard Grant
Mathematical and Quantitative Aspects in Behavioural Finance Problems
行为金融问题的数学和定量方面
  • 批准号:
    RGPIN-2014-06452
  • 财政年份:
    2017
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Length of Geodesic Loops and Distortion of Knots: Quantitative Aspects of Geometric and Topological Structures
测地线环的长度和结的变形:几何和拓扑结构的定量方面
  • 批准号:
    491689-2015
  • 财政年份:
    2017
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Vanier Canada Graduate Scholarship Tri-Council - Doctoral 3 years
Mathematical and Quantitative Aspects in Behavioural Finance Problems
行为金融问题的数学和定量方面
  • 批准号:
    RGPIN-2014-06452
  • 财政年份:
    2016
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
AF: Small: Quantitative and Algorithmic Aspects of Semi-algebraic Sets and Partitions
AF:小:半代数集和分区的定量和算法方面
  • 批准号:
    1618981
  • 财政年份:
    2016
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Standard Grant
Conference: Topological and Quantitative Aspects of Symplectic Manifolds; Columbia University and Barnard College, March 17-20, 2016
会议:辛流形的拓扑和定量方面;
  • 批准号:
    1554820
  • 财政年份:
    2016
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了