Dynamics of mechanical systems with symmetry
对称机械系统的动力学
基本信息
- 批准号:RGPIN-2015-05917
- 负责人:
- 金额:$ 0.8万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2018
- 资助国家:加拿大
- 起止时间:2018-01-01 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Prediction and control of the future are central themes of science and technology. We all want to know what the future will bring. We also want to control the future so that either undesired states are eliminated (e.g., preventing the spreading of a disease), or desired states are attained (e.g., redirecting the camera of a satellite towards a target). *** This proposal concerns the dynamics of mechanical systems, that is, how they move or evolve over time. While the future evolution of a system can to some degree be predicted using computer algorithms, a theoretical understanding of possible dynamical features can improve prediction and also lay the groundwork for strategies to control it. *** Many systems may be analyzed together, if they display similar characteristics. For mechanical systems, these characteristics may refer to the geometry of the environment (e.g., motion on a flat surface as opposed to motions in space), the physical laws (e.g., motions where the energy is conserved, as opposed to motions with friction), or symmetries (e.g. a perfectly round ball, without markings on it, looks the same from all directions). Systems are then organized in specific classes, and within each one, we attempt to describe the possible dynamical behaviours. Of particular interest are the steady states (in which the system remains "frozen") and other special trajectories, their stability, and the changes ("bifurcations'') that may occur as certain physical features or parameters vary.*** My aim is to develop methods and techniques useful for capturing the common dynamical features of energy conserving mechanical systems with symmetry. The proposal considers two sub-classes: 1) unconstrained mechanical systems such as n-particle models of molecules, or rigid bodies in gravitational interactions (for example, asteroids); and 2) constrained mechanical systems, such as sleighs, rolling spheres, and finned arrows or underwater vehicles modelled under the assumption that dissipative forces (for instance, friction) are neglected. Within each subclass, I propose to develop methods for studying bifurcation and stability. I will use the mathematical formalism and methods of differential equations (to describe the evolution of the system), differential geometry and topology (to describe the space) and bifurcation theory (to describe the possible branches of the dynamics).*** My research adds to the fundamental knowledge of dynamical systems and has applications in mechanical engineering (control and stabilization of mechanical devices), space science (e.g., stability of asteroidal systems, spin-orbit coupling of moon-planet systems) and physical chemistry (e.g., roto-vibrational states of polyatomic molecules). **
预测和控制未来是科学技术的中心主题。我们都想知道未来会发生什么。我们还希望控制未来,以便消除不期望的状态(例如,防止疾病的传播),或者达到期望的状态(例如,将卫星的照相机重定向到目标)。* 这个建议涉及机械系统的动力学,即它们如何随时间移动或演变。虽然一个系统的未来演化在某种程度上可以用计算机算法预测,但对可能的动力学特征的理论理解可以改善预测,并为控制它的策略奠定基础。 * 如果多个系统显示出相似的特征,则可以一起分析。 对于机械系统,这些特性可以指环境的几何形状(例如,与空间中的运动相反的平面上的运动),物理定律(例如,能量守恒的运动,与摩擦运动相反)或对称性(例如,一个完美的圆球,上面没有标记,从各个方向看都一样)。 然后,系统被组织在特定的类中,在每个类中,我们试图描述可能的动力学行为。特别令人感兴趣的是稳态(系统保持“冻结”)和其他特殊轨迹,它们的稳定性,以及随着某些物理特征或参数的变化而可能发生的变化(“分叉”)。 我的目标是开发有用的方法和技术,用于捕获具有对称性的节能机械系统的共同动力学特征。该提案考虑了两个子类:1)无约束的力学系统,如分子的n粒子模型,或引力相互作用中的刚体(例如,小行星); 2)受约束的力学系统,如sleeps,滚动球和鳍箭或水下航行器,在忽略耗散力(例如,摩擦力)的假设下建模。在每个子类中,我建议开发研究分叉和稳定性的方法。我将使用数学形式和方法, 微分方程(描述系统的演化),微分几何和拓扑学(描述空间)和分叉理论(描述动力学的可能分支)。 我的研究增加了动力系统的基础知识, 在机械工程(机械装置的控制和稳定),空间科学(例如,小行星系统的稳定性,月球-行星系统的自旋-轨道耦合)和物理化学(例如,多原子分子的旋转振动态)。 **
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Stoica, Cristina其他文献
Clinical Characteristics, Renal Involvement, and Therapeutic Options of Pediatric Patients With Fabry Disease.
- DOI:
10.3389/fped.2022.908657 - 发表时间:
2022 - 期刊:
- 影响因子:2.6
- 作者:
Muntean, Carmen;Starcea, Iuliana Magdalena;Stoica, Cristina;Banescu, Claudia - 通讯作者:
Banescu, Claudia
The Role of Urinary NGAL in the Management of Primary Vesicoureteral Reflux in Children.
- DOI:
10.3390/ijms24097904 - 发表时间:
2023-04-26 - 期刊:
- 影响因子:5.6
- 作者:
Gavrilovici, Cristina;Dusa, Cristian Petru;Halitchi, Codruta Iliescu;Lupu, Vasile Valeriu;Spoiala, Elena Lia;Bogos, Roxana Alexandra;Mocanu, Adriana;Gafencu, Mihai;Lupu, Ancuta;Stoica, Cristina;Starcea, Iuliana Magdalena - 通讯作者:
Starcea, Iuliana Magdalena
Stoica, Cristina的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Stoica, Cristina', 18)}}的其他基金
Dynamics of mechanical systems
机械系统动力学
- 批准号:
RGPIN-2020-04257 - 财政年份:2022
- 资助金额:
$ 0.8万 - 项目类别:
Discovery Grants Program - Individual
Dynamics of mechanical systems
机械系统动力学
- 批准号:
RGPIN-2020-04257 - 财政年份:2021
- 资助金额:
$ 0.8万 - 项目类别:
Discovery Grants Program - Individual
Dynamics of mechanical systems
机械系统动力学
- 批准号:
RGPIN-2020-04257 - 财政年份:2020
- 资助金额:
$ 0.8万 - 项目类别:
Discovery Grants Program - Individual
Dynamics of mechanical systems with symmetry
对称机械系统的动力学
- 批准号:
RGPIN-2015-05917 - 财政年份:2019
- 资助金额:
$ 0.8万 - 项目类别:
Discovery Grants Program - Individual
Dynamics of mechanical systems with symmetry
对称机械系统的动力学
- 批准号:
RGPIN-2015-05917 - 财政年份:2017
- 资助金额:
$ 0.8万 - 项目类别:
Discovery Grants Program - Individual
Dynamics of mechanical systems with symmetry
对称机械系统的动力学
- 批准号:
RGPIN-2015-05917 - 财政年份:2016
- 资助金额:
$ 0.8万 - 项目类别:
Discovery Grants Program - Individual
Dynamics of mechanical systems with symmetry
对称机械系统的动力学
- 批准号:
RGPIN-2015-05917 - 财政年份:2015
- 资助金额:
$ 0.8万 - 项目类别:
Discovery Grants Program - Individual
Dynamics of constrained and unconstrained mechanical systems
受约束和无约束机械系统的动力学
- 批准号:
240798-2010 - 财政年份:2014
- 资助金额:
$ 0.8万 - 项目类别:
Discovery Grants Program - Individual
Dynamics of constrained and unconstrained mechanical systems
受约束和无约束机械系统的动力学
- 批准号:
240798-2010 - 财政年份:2013
- 资助金额:
$ 0.8万 - 项目类别:
Discovery Grants Program - Individual
Dynamics of constrained and unconstrained mechanical systems
受约束和无约束机械系统的动力学
- 批准号:
240798-2010 - 财政年份:2012
- 资助金额:
$ 0.8万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
镍基UNS N10003合金辐照位错环演化机制及其对力学性能的影响研究
- 批准号:12375280
- 批准年份:2023
- 资助金额:53.00 万元
- 项目类别:面上项目
组蛋白乙酰化修饰ATG13激活自噬在牵张应力介导骨缝Gli1+干细胞成骨中的机制研究
- 批准号:82370988
- 批准年份:2023
- 资助金额:48.00 万元
- 项目类别:面上项目
梯度强/超强静磁场对细胞有丝分裂纺锤体取向和形态的影响及机制研究
- 批准号:31900506
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
力学紧凑加速肝细胞三维复极性行为的作用机制
- 批准号:31100701
- 批准年份:2011
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
自成漆酶/介体体系应用于化学机械浆清洁漂白及树脂障碍控制的研究
- 批准号:21006034
- 批准年份:2010
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
力学环境对骨愈合初期的新生血管形成图式的影响研究
- 批准号:11072021
- 批准年份:2010
- 资助金额:45.0 万元
- 项目类别:面上项目
虹膜生物力学特性及临床应用
- 批准号:10472005
- 批准年份:2004
- 资助金额:26.0 万元
- 项目类别:面上项目
相似海外基金
Dynamics of mechanical systems
机械系统动力学
- 批准号:
RGPIN-2020-04257 - 财政年份:2022
- 资助金额:
$ 0.8万 - 项目类别:
Discovery Grants Program - Individual
High-Performance Dynamics and Simulation of Mechanical Systems
机械系统的高性能动力学和仿真
- 批准号:
570951-2021 - 财政年份:2022
- 资助金额:
$ 0.8万 - 项目类别:
Alliance Grants
CAREER: Dynamics of Extreme Locomotion in Biological and Bioinspired Systems: The Effect of Elasticity on Mobility and Mechanical Power Flow
职业:生物和仿生系统中极限运动的动力学:弹性对移动性和机械功率流的影响
- 批准号:
2219644 - 财政年份:2022
- 资助金额:
$ 0.8万 - 项目类别:
Standard Grant
Computational Dynamics of Mechanical Systems
机械系统的计算动力学
- 批准号:
RGPIN-2019-06765 - 财政年份:2022
- 资助金额:
$ 0.8万 - 项目类别:
Discovery Grants Program - Individual
CAREER: Dynamics of Extreme Locomotion in Biological and Bioinspired Systems: The Effect of Elasticity on Mobility and Mechanical Power Flow
职业:生物和仿生系统中极限运动的动力学:弹性对移动性和机械功率流的影响
- 批准号:
2048092 - 财政年份:2021
- 资助金额:
$ 0.8万 - 项目类别:
Standard Grant
Dynamics, Integrability, and Control of Mechanical and Physical Systems
机械和物理系统的动力学、可积性和控制
- 批准号:
2103026 - 财政年份:2021
- 资助金额:
$ 0.8万 - 项目类别:
Standard Grant
Computational Dynamics of Mechanical Systems
机械系统的计算动力学
- 批准号:
RGPIN-2019-06765 - 财政年份:2021
- 资助金额:
$ 0.8万 - 项目类别:
Discovery Grants Program - Individual
Dynamics of mechanical systems
机械系统动力学
- 批准号:
RGPIN-2020-04257 - 财政年份:2021
- 资助金额:
$ 0.8万 - 项目类别:
Discovery Grants Program - Individual
Computational Dynamics of Mechanical Systems
机械系统的计算动力学
- 批准号:
RGPIN-2019-06765 - 财政年份:2020
- 资助金额:
$ 0.8万 - 项目类别:
Discovery Grants Program - Individual
Dynamics of mechanical systems
机械系统动力学
- 批准号:
RGPIN-2020-04257 - 财政年份:2020
- 资助金额:
$ 0.8万 - 项目类别:
Discovery Grants Program - Individual