Applications of commutative algebra
交换代数的应用
基本信息
- 批准号:RGPIN-2014-03898
- 负责人:
- 金额:$ 1.31万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2018
- 资助国家:加拿大
- 起止时间:2018-01-01 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
My research lies in the intersection of three areas of mathematics: algebra, geometry, and combinatorics. The overlap of algebra and geometry is a rich area of mathematics that dates back to at least the first half of the 17th century. The mathematician/philosopher Rene Descartes was among the first to demonstrate the power of associating geometric objects with algebraic equations and vice versa. Describing a line or a parabola with an equation is an example of this technique that many Canadians will remember from their mathematics courses in high school. In a similar way, there are ways to connect algebra with problems in combinatorics (counting problems and discrete structures), allowing one to study the same problem through multiple lenses. While many new tools and techniques have been developed since Descartes' time, the theme of studying problems from many different angles has remained a constant.**The research of the proposal is interested in exploring and uncovering new connections between algebra, geometry, and combinatorics, and in particular, applying the tools and techniques of commutative algebra to questions in other areas of mathematics. A brief summary of three of my proposed projects are given below. **One facet of my proposed research focuses on the algebraic structures attached to a graph, in order to build a bridge between graph theory and algebra. A graph is a collection of nodes with lines joining some of the nodes together. When we colour a graph, we want to assign a colour to each node subject to the rule that nodes that are joined together by a line must receive a different colour. One would then like to know what is the least number of colours you need to colour the graph. Colouring problems can be related to questions about scheduling and even solving Sudoku problems. Over the last couple of years, I have been interested in studying how this colouring information can be encoded algebraically. My current research proposal is interested in finding graphs with interesting colouring properties in order to build unique and interesting algebraic structures.**Another project of my proposal also hopes to strengthen this bridge between graph theory and algebra. I am interested in objects called toric ideals which can be constructed from a graph. Toric ideals have rich structure, and can be studied geometrical, algebraically, or even combinatorially. Toric ideals are of great interest because they have applications to areas such as biology and statistics. I am interested in determining how the graph theory information gets encoded into an algebraic object called a minimal free resolution. **A third project of my research proposal is to use geometry and algebra to study problems about matrices. Matrices, which are rectangular arrays of numbers, are commonly introduced as a tool to study systems of equations. I am currently interested in problems of the following type: what properties about the matrix can we deduce if we are only given some partial information about the matrix, e.g. the location of the non-zero entries? The origin of this type of question can be traced back to work of P. Samuelson, the Nobel Prize winner in Economics. More recently, problems of this type have appeared in the context of modelling diseases. My proposed research plans to study problems of this type through the lenses of algebraic geometry and commutative algebra, thus introducing new tools and techniques to the area.**These projects, which are part of my ongoing research programme to understand homological and algebraic invariants, will hopefully provide a theoretical basis for future applications.
我的研究涉及三个数学领域的交叉:代数、几何和组合学。代数和几何的重叠是一个丰富的数学领域,至少可以追溯到17世纪上半叶。数学家兼哲学家勒内·笛卡尔是最早证明将几何对象与代数方程联系在一起的力量之一。用方程式描述直线或抛物线就是这种技术的一个例子,许多加拿大人会在高中的数学课上记住这种技术。以类似的方式,有一些方法可以将代数与组合学中的问题(计数问题和离散结构)联系起来,允许人们通过多个镜头研究相同的问题。虽然自笛卡尔时代以来已经开发了许多新的工具和技术,但从许多不同的角度研究问题的主题仍然是不变的。**该提案的研究感兴趣的是探索和揭示代数、几何和组合学之间的新联系,特别是将交换代数的工具和技术应用于其他数学领域的问题。下面是我提议的三个项目的简要摘要。**我提出的研究的一个方面是关注附加到图上的代数结构,以便在图论和代数之间架起一座桥梁。图是用线将一些节点连接在一起的节点的集合。当我们给图形上色时,我们希望为每个节点分配一种颜色,但要遵守这样的规则,即由一条线连接在一起的节点必须具有不同的颜色。然后,人们会想知道为图表上色所需的最少颜色数是多少。上色问题可以与调度问题相关,甚至可以与解决数独问题有关。在过去的几年里,我一直有兴趣研究如何对这种着色信息进行代数编码。我目前的研究建议是寻找具有有趣着色性质的图,以便建立独特而有趣的代数结构。**我建议的另一个项目也希望加强图论和代数之间的这座桥梁。我对被称为环面理想的物体感兴趣,这种物体可以从图中构造出来。环面理想具有丰富的结构,可以用几何、代数甚至组合的方法来研究。环面理想引起了人们的极大兴趣,因为它们在生物学和统计学等领域都有应用。我感兴趣的是如何确定图论信息如何编码到称为最小自由分解的代数对象中。**我的研究建议的第三个项目是使用几何和代数来研究关于矩阵的问题。矩阵是由数字组成的矩形阵列,通常被引入作为研究方程组的工具。我目前对以下类型的问题感兴趣:如果我们只得到关于矩阵的一些部分信息,例如非零条目的位置,那么我们可以推导出关于矩阵的哪些性质?这类问题的起源可以追溯到诺贝尔经济学奖获得者P·萨缪尔森的工作。最近,这种类型的问题出现在疾病建模的背景下。我提出的研究计划通过代数几何和交换代数的透镜来研究这类问题,从而将新的工具和技术引入该领域。**这些项目是我正在进行的理解同调和代数不变量的研究计划的一部分,有望为未来的应用提供理论基础。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
VanTuyl, Adam其他文献
VanTuyl, Adam的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('VanTuyl, Adam', 18)}}的其他基金
Problems in combinatorial commutative algebra
组合交换代数问题
- 批准号:
RGPIN-2019-05412 - 财政年份:2022
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Problems in combinatorial commutative algebra
组合交换代数问题
- 批准号:
RGPIN-2019-05412 - 财政年份:2021
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Problems in combinatorial commutative algebra
组合交换代数问题
- 批准号:
RGPIN-2019-05412 - 财政年份:2020
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Problems in combinatorial commutative algebra
组合交换代数问题
- 批准号:
RGPIN-2019-05412 - 财政年份:2019
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Applications of commutative algebra
交换代数的应用
- 批准号:
RGPIN-2014-03898 - 财政年份:2017
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Applications of commutative algebra
交换代数的应用
- 批准号:
RGPIN-2014-03898 - 财政年份:2016
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Applications of commutative algebra
交换代数的应用
- 批准号:
RGPIN-2014-03898 - 财政年份:2015
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Applications of commutative algebra
交换代数的应用
- 批准号:
RGPIN-2014-03898 - 财政年份:2014
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Using commutative algebra to investigate problems in graph theory and algebraic geometry
使用交换代数研究图论和代数几何中的问题
- 批准号:
249722-2009 - 财政年份:2013
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Using commutative algebra to investigate problems in graph theory and algebraic geometry
使用交换代数研究图论和代数几何中的问题
- 批准号:
249722-2009 - 财政年份:2012
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
相似海外基金
Powers in Commutative Algebra: Approaches, Properties, and Applications
交换代数的幂:方法、性质和应用
- 批准号:
RGPIN-2018-05004 - 财政年份:2022
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Powers in Commutative Algebra: Approaches, Properties, and Applications
交换代数的幂:方法、性质和应用
- 批准号:
RGPIN-2018-05004 - 财政年份:2021
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Collaborative Research: A Software System for Research in Algebraic Geometry, Commutative Algebra, and their Applications
协作研究:代数几何、交换代数及其应用研究的软件系统
- 批准号:
2001267 - 财政年份:2020
- 资助金额:
$ 1.31万 - 项目类别:
Continuing Grant
Collaborative Research: A Software System for Research in Algebraic Geometry, Commutative Algebra, and their Applications
协作研究:代数几何、交换代数及其应用研究的软件系统
- 批准号:
2001206 - 财政年份:2020
- 资助金额:
$ 1.31万 - 项目类别:
Continuing Grant
Powers in Commutative Algebra: Approaches, Properties, and Applications
交换代数的幂:方法、性质和应用
- 批准号:
RGPIN-2018-05004 - 财政年份:2020
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Collaborative Research: A Software System for Research in Algebraic Geometry, Commutative Algebra, and their Applications
协作研究:代数几何、交换代数及其应用研究的软件系统
- 批准号:
2001367 - 财政年份:2020
- 资助金额:
$ 1.31万 - 项目类别:
Continuing Grant
Powers in Commutative Algebra: Approaches, Properties, and Applications
交换代数的幂:方法、性质和应用
- 批准号:
RGPIN-2018-05004 - 财政年份:2019
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Commutative 2-algebra and applications.
交换2-代数及其应用。
- 批准号:
2106379 - 财政年份:2018
- 资助金额:
$ 1.31万 - 项目类别:
Studentship
Applications of Representation Theory in Commutative Algebra
表示论在交换代数中的应用
- 批准号:
1802067 - 财政年份:2018
- 资助金额:
$ 1.31万 - 项目类别:
Continuing Grant
Powers in Commutative Algebra: Approaches, Properties, and Applications
交换代数的幂:方法、性质和应用
- 批准号:
RGPIN-2018-05004 - 财政年份:2018
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual