Finite fields and applications in coding theory and cryptography
编码理论和密码学的有限领域和应用
基本信息
- 批准号:RGPIN-2017-06410
- 负责人:
- 金额:$ 2.19万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2018
- 资助国家:加拿大
- 起止时间:2018-01-01 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The proposed research area is finite fields and applications in coding theory and cryptography. My recent research has centered on the theoretical study of discrete objects/structures and their properties over finite fields, as well as on their applications to other branches of mathematics and information theory. These objects include polynomials and sequences over finite fields, which have a large number of applications in coding theory, communications and cryptography. This is a fascinating and vibrant area of research in the intersection of discrete math, number theory, theoretical computer science and information theory. Many open problems and conjectures over finite fields arise from useful problems in information theory. It is my long term vision to play a significant and lasting contribution to this area of research. *********The combinatorial properties of polynomials such as permutations and value set sizes, arithmetic properties of polynomials such as irreducibility, primitivity, divisibility and factorization, as well as the pseudo-randomness of sequences, are central topics of fundamental research. For example, there has been an increasing demand for further studies of objects such as permutation polynomials, irreducible polynomials, primitive polynomials, and feedback shift register sequences due to their applications in block ciphers and stream ciphers, as well as signal sets in wireless communications. Indeed, the design of good S-boxes (permutations) which are resistant against linear/differential cryptanalysis requires useful special functions such as almost perfect nonlinear (APN) permutations; improving the complexity of list decoding algorithm for Reed-Solomon codes requires the further study of polynomials with prescribed ranges; the design of reliable stream ciphers requires good pseudo-random sequences; the implementation of linear feedback shift register (LFSR) sequences requires the understanding of existence of primitive polynomials with certain low weight (i.e., 3 or 5 nonzero coefficients) over the binary field. ******My long term goal is thus two-fold: 1) to better understand the combinatorial and arithmetic properties of these fundamental objects over finite fields, and their construction, distribution and enumeration; 2) to better understand the interplay among different objects and properties over finite fields and find genuine applications such as constructing good codes and S-boxes. My scientific approach requires not only extensively theoretical efforts, but also massive computational experiments. This quest involves a combination of knowledge from combinatorics, number theory, algebra, computer science, and information theory. Positive solutions to some of these problems would not only have significant impact on the research community but also have direct technology advance.
拟研究的领域是有限域及其在编码理论和密码学中的应用。我最近的研究集中在离散对象/结构及其在有限域上的性质的理论研究,以及它们在数学和信息论的其他分支中的应用。这些对象包括有限域上的多项式和序列,它们在编码理论、通信和密码学中有大量的应用。这是离散数学、数论、理论计算机科学和信息论交叉的一个迷人而充满活力的研究领域。有限域上的许多未解决的问题和解答都是由信息论中的一些有用问题引起的。我的长期愿景是为这一研究领域做出重大而持久的贡献。********** 多项式的组合性质,如排列和值集大小,多项式的算术性质,如不可约性,可分性,整除性和因式分解,以及序列的伪随机性,是基础研究的中心课题。比如说, 由于诸如置换多项式、不可约多项式、本原多项式和反馈移位寄存器序列的对象在分组密码和流密码以及无线通信中的信号集中的应用,因此对它们的进一步研究的需求不断增加。实际上,设计好的S盒(置换)需要一些有用的特殊函数,如几乎完美非线性置换(APN);提高Reed-Solomon码的列表译码算法的复杂度需要进一步研究具有指定范围的多项式;设计可靠的流密码需要好的伪随机序列; 线性反馈移位寄存器(LFSR)序列的实现需要理解具有特定低权重的本原多项式的存在性(即,3或5个非零系数)。 ** 因此,我的长期目标是双重的:1)更好地理解这些基本对象在有限域上的组合和算术性质,以及它们的构造,分布和枚举; 2)更好地理解有限域上不同对象和性质之间的相互作用,并找到真正的应用,例如构造好的代码和S盒。我的科学方法不仅需要广泛的理论努力,还需要大量的计算实验。这一探索涉及组合数学,数论,代数,计算机科学和信息论的知识组合。 其中一些问题的积极解决方案不仅会对研究界产生重大影响,而且会直接推动技术进步。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Wang, Qiang(Steven)其他文献
Wang, Qiang(Steven)的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Wang, Qiang(Steven)', 18)}}的其他基金
Finite fields and applications in coding theory and cryptography
编码理论和密码学的有限领域和应用
- 批准号:
RGPIN-2017-06410 - 财政年份:2022
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
Finite fields and applications in coding theory and cryptography
编码理论和密码学的有限领域和应用
- 批准号:
RGPIN-2017-06410 - 财政年份:2021
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
Finite fields and applications in coding theory and cryptography
编码理论和密码学的有限领域和应用
- 批准号:
RGPIN-2017-06410 - 财政年份:2020
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
Finite fields and applications in coding theory and cryptography
编码理论和密码学的有限领域和应用
- 批准号:
RGPIN-2017-06410 - 财政年份:2019
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
Finite fields and applications in coding theory and cryptography
编码理论和密码学的有限领域和应用
- 批准号:
RGPIN-2017-06410 - 财政年份:2017
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
finite fields and their applications
有限域及其应用
- 批准号:
312588-2012 - 财政年份:2016
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
finite fields and their applications
有限域及其应用
- 批准号:
312588-2012 - 财政年份:2015
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
finite fields and their applications
有限域及其应用
- 批准号:
312588-2012 - 财政年份:2014
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
Finite fields transforms for software protection
软件保护的有限域变换
- 批准号:
461946-2013 - 财政年份:2013
- 资助金额:
$ 2.19万 - 项目类别:
Engage Grants Program
finite fields and their applications
有限域及其应用
- 批准号:
312588-2012 - 财政年份:2013
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
手性Salen配合物催化与底物诱导的不对称多组分Kabachnik-Fields反应
- 批准号:21162008
- 批准年份:2011
- 资助金额:25.0 万元
- 项目类别:地区科学基金项目
相似海外基金
Finite fields and applications in coding theory and cryptography
编码理论和密码学的有限领域和应用
- 批准号:
RGPIN-2017-06410 - 财政年份:2022
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
Finite fields and applications in coding theory and cryptography
编码理论和密码学的有限领域和应用
- 批准号:
RGPIN-2017-06410 - 财政年份:2021
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
Finite fields and applications in coding theory and cryptography
编码理论和密码学的有限领域和应用
- 批准号:
RGPIN-2017-06410 - 财政年份:2020
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
Finite Fields and their Applications at Simon Fraser University
西蒙弗雷泽大学的有限域及其应用
- 批准号:
1905024 - 财政年份:2019
- 资助金额:
$ 2.19万 - 项目类别:
Standard Grant
Finite fields and applications in coding theory and cryptography
编码理论和密码学的有限领域和应用
- 批准号:
RGPIN-2017-06410 - 财政年份:2019
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
Explicit computations of weight one modular forms including the cases over finite fields and their applications
权一模形式的显式计算,包括有限域上的情况及其应用
- 批准号:
18K13394 - 财政年份:2018
- 资助金额:
$ 2.19万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Finite fields and applications in coding theory and cryptography
编码理论和密码学的有限领域和应用
- 批准号:
RGPIN-2017-06410 - 财政年份:2017
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
finite fields and their applications
有限域及其应用
- 批准号:
312588-2012 - 财政年份:2016
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
Projective geometry over finite fields and its applications to coding theory
有限域上的射影几何及其在编码理论中的应用
- 批准号:
15K04829 - 财政年份:2015
- 资助金额:
$ 2.19万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
finite fields and their applications
有限域及其应用
- 批准号:
312588-2012 - 财政年份:2015
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual