Development of geospatial clustering methods for broadband seismic-facies analysis

宽带地震相分析的地理空间聚类方法的开发

基本信息

  • 批准号:
    514549-2017
  • 负责人:
  • 金额:
    $ 4.66万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Collaborative Research and Development Grants
  • 财政年份:
    2018
  • 资助国家:
    加拿大
  • 起止时间:
    2018-01-01 至 2019-12-31
  • 项目状态:
    已结题

项目摘要

Seismic data acquisition and geospatial information collection are common practice in current engineering and**resource exploration fields. The dynamic nature of today's industry requires new technology and ways of**conducting seismic and geomatics survey continuously, effective and efficient seismic data processing is**important to industry user groups. In this project, we will focus on the development of efficient geospatial**clustering methods and a system prototype to identify groups of similar seismic facies to represent variability in**subsurface content. The project will provide the industrial partner Symroc with a better understanding and**technology of how to efficiently identify seismic facies from a wide range of frequency seismic data. This**project will be coordinated and finished by the team of Dr. Xin Wang at University of Calgary with**collaborators from the industrial partner Symroc. The project offers innovative approaches and distinctive**solutions that can lead to a more systematic and data-driven procedure for semismic data analysis, visualization**and interpretation. It will provide Symroc better software solution to process seimsmic data. The project offers**innovative approaches and distinctive solutions that can lead to more energy-efficient, low cost and reliable**seismic data collection, integration, analytics and visualization process. The developed methods and system can**potentially be used to help natural earthquake studies and researches, resource industry operations, live**monitoring, and other real time environmental monitoring. This project is aligned with Federal, Provincial and**the University of Calgary strategic priorities. Additionally, the expertise and research experience provides**unique training opportunities for HQP.
地震数据采集和地理空间信息收集是当前工程和资源勘探领域的常见做法。当今工业的动态特性要求不断地进行地震和地质信息调查的新技术和方法,有效和高效的地震数据处理对工业用户群体来说是重要的。在这个项目中,我们将专注于开发高效的地理空间聚类方法和系统原型,以识别相似的地震相组,以代表地下含量的变化。该项目将使工业合作伙伴Symroc更好地了解如何从各种频率的地震数据中有效地识别地震相,并提供更好的技术。这个 ** 项目将由卡尔加里大学的Xin Wang博士团队与工业合作伙伴Symroc的 ** 合作者协调和完成。该项目提供了创新的方法和独特的解决方案,可以导致一个更系统和数据驱动的程序,语义数据分析,可视化 ** 和解释。它将为Symroc提供更好的地震数据处理软件解决方案。该项目提供了创新的方法和独特的解决方案,可以实现更节能,更低成本和更可靠的地震数据收集,集成,分析和可视化过程。所开发的方法和系统可用于自然地震研究、资源工业运营、现场监测和其他真实的实时环境监测。该项目与联邦,省和 ** 卡尔加里大学的战略优先事项保持一致。此外,专业知识和研究经验为HQP提供了独特的培训机会。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Wang, Xin其他文献

Preparation of lignin-based porous carbon with hierarchical oxygen-enriched structure for high-performance supercapacitors
A note on instanton effects in ABJM theory
ABJM理论中瞬子效应的注记
  • DOI:
    10.1007/jhep11(2014)100
  • 发表时间:
    2014-09
  • 期刊:
  • 影响因子:
    5.4
  • 作者:
    Wang, Xian-fu;Wang, Xin;Huang, Min-xin
  • 通讯作者:
    Huang, Min-xin
Train duration and inter-train interval determine the direction and intensity of high-frequency rTMS after-effects.
  • DOI:
    10.3389/fnins.2023.1157080
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    4.3
  • 作者:
    Jin, Jingna;Wang, Xin;Wang, He;Li, Ying;Liu, Zhipeng;Yin, Tao
  • 通讯作者:
    Yin, Tao
Arabidopsis Floral Initiator SKB1 Confers High Salt Tolerance by Regulating Transcription and Pre-mRNA Splicing through Altering Histone H4R3 and Small Nuclear Ribonucleoprotein LSM4 Methylation
拟南芥花引发剂 SKB1 通过改变组蛋白 H4R3 和小核核糖核蛋白 LSM4 甲基化来调节转录和前 mRNA 剪接,从而赋予高盐耐受性
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    11.6
  • 作者:
    Bao, Shilai;Zhang, Shupei;Zhang, Ya;Wang, Xin;Li, Dan;Li, Qiuling;Yue, Minghui;Li, Qun;Zhang, Yu-e
  • 通讯作者:
    Zhang, Yu-e
Catalytic hydrogenation of nitrophenols and nitrotoluenes over a palladium/graphene nanocomposite
钯/石墨烯纳米复合材料上硝基苯酚和硝基甲苯的催化氢化
  • DOI:
    10.1039/c4cy00048j
  • 发表时间:
    2014-05
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Fu, Yongsheng;He, Guangyu;Sun, Xiaoqiang;Wang, Xin
  • 通讯作者:
    Wang, Xin

Wang, Xin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Wang, Xin', 18)}}的其他基金

Personalized Location Recommendation on Location-Based Social Networks by Efficiently Utilizing Spatio-Temporal Information
有效利用时空信息的基于位置的社交网络的个性化位置推荐
  • 批准号:
    RGPIN-2018-03916
  • 财政年份:
    2022
  • 资助金额:
    $ 4.66万
  • 项目类别:
    Discovery Grants Program - Individual
Three-Dimensional Mixed-Mode Fracture Mechanics Methodologies for Structural Integrity Assessments of Welded Structures
用于焊接结构结构完整性评估的三维混合模式断裂力学方法
  • 批准号:
    RGPIN-2020-06550
  • 财政年份:
    2022
  • 资助金额:
    $ 4.66万
  • 项目类别:
    Discovery Grants Program - Individual
Personalized Location Recommendation on Location-Based Social Networks by Efficiently Utilizing Spatio-Temporal Information
有效利用时空信息的基于位置的社交网络的个性化位置推荐
  • 批准号:
    RGPIN-2018-03916
  • 财政年份:
    2021
  • 资助金额:
    $ 4.66万
  • 项目类别:
    Discovery Grants Program - Individual
Three-Dimensional Mixed-Mode Fracture Mechanics Methodologies for Structural Integrity Assessments of Welded Structures
用于焊接结构结构完整性评估的三维混合模式断裂力学方法
  • 批准号:
    RGPIN-2020-06550
  • 财政年份:
    2021
  • 资助金额:
    $ 4.66万
  • 项目类别:
    Discovery Grants Program - Individual
Personalized Location Recommendation on Location-Based Social Networks by Efficiently Utilizing Spatio-Temporal Information
有效利用时空信息的基于位置的社交网络的个性化位置推荐
  • 批准号:
    RGPIN-2018-03916
  • 财政年份:
    2020
  • 资助金额:
    $ 4.66万
  • 项目类别:
    Discovery Grants Program - Individual
Three-Dimensional Mixed-Mode Fracture Mechanics Methodologies for Structural Integrity Assessments of Welded Structures
用于焊接结构结构完整性评估的三维混合模式断裂力学方法
  • 批准号:
    RGPIN-2020-06550
  • 财政年份:
    2020
  • 资助金额:
    $ 4.66万
  • 项目类别:
    Discovery Grants Program - Individual
Fracture Mechanics Methodologies for Structural Integrity Assessments and Fatigue Life Predictions under Multi-axial Non-proportional Loading
多轴非比例载荷下结构完整性评估和疲劳寿命预测的断裂力学方法
  • 批准号:
    RGPIN-2015-03994
  • 财政年份:
    2019
  • 资助金额:
    $ 4.66万
  • 项目类别:
    Discovery Grants Program - Individual
Development of geospatial clustering methods for broadband seismic-facies analysis
宽带地震相分析的地理空间聚类方法的开发
  • 批准号:
    514549-2017
  • 财政年份:
    2019
  • 资助金额:
    $ 4.66万
  • 项目类别:
    Collaborative Research and Development Grants
Personalized Location Recommendation on Location-Based Social Networks by Efficiently Utilizing Spatio-Temporal Information
有效利用时空信息的基于位置的社交网络的个性化位置推荐
  • 批准号:
    RGPIN-2018-03916
  • 财政年份:
    2019
  • 资助金额:
    $ 4.66万
  • 项目类别:
    Discovery Grants Program - Individual
Personalized Location Recommendation on Location-Based Social Networks by Efficiently Utilizing Spatio-Temporal Information
有效利用时空信息的基于位置的社交网络的个性化位置推荐
  • 批准号:
    RGPIN-2018-03916
  • 财政年份:
    2018
  • 资助金额:
    $ 4.66万
  • 项目类别:
    Discovery Grants Program - Individual

相似海外基金

Job share: Embedding environmental and geospatial science in nature recovery and rewilding
工作分享:将环境和地理空间科学融入自然恢复和野化中
  • 批准号:
    NE/Y005163/1
  • 财政年份:
    2024
  • 资助金额:
    $ 4.66万
  • 项目类别:
    Research Grant
Job Share: Embedding environmental and geospatial science in nature recovery and rewilding
工作分享:将环境和地理空间科学融入自然恢复和野化中
  • 批准号:
    NE/Y005155/1
  • 财政年份:
    2024
  • 资助金额:
    $ 4.66万
  • 项目类别:
    Research Grant
Adaptive Ising-machine-based Solvers for Large-scale Real-world Geospatial Optimization Problems
基于自适应 Ising 机的大规模现实世界地理空间优化问题求解器
  • 批准号:
    24K20779
  • 财政年份:
    2024
  • 资助金额:
    $ 4.66万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
SCC-PG: Internet of Waste: A Low-Cost Geospatial Sensor Network for Optimizing Solid Waste Management and Fostering Resident's Recycling Effectiveness Through Evidential Education
SCC-PG:废物互联网:通过循证教育优化固体废物管理并提高居民回收效率的低成本地理空间传感器网络
  • 批准号:
    2341996
  • 财政年份:
    2024
  • 资助金额:
    $ 4.66万
  • 项目类别:
    Standard Grant
Assessing the Coordination of Electric Vehicle Adoption on Urban Energy Transition: A Geospatial Machine Learning Framework
评估电动汽车采用对城市能源转型的协调:地理空间机器学习框架
  • 批准号:
    24K20973
  • 财政年份:
    2024
  • 资助金额:
    $ 4.66万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
I-Corps: Using Remote Sensing and Geospatial Data for Informed Climate Adaptation, Mitigation, Resiliency, and Environmentally Friendly Solutions
I-Corps:利用遥感和地理空间数据提供明智的气候适应、减缓、恢复和环境友好解决方案
  • 批准号:
    2314315
  • 财政年份:
    2023
  • 资助金额:
    $ 4.66万
  • 项目类别:
    Standard Grant
Project Reportneedles.ca: A geospatial, rapid assessment and response system for HIV and syphilis prevention and harm reduction
Reportneedles.ca 项目:用于艾滋病毒和梅毒预防和减少危害的地理空间快速评估和响应系统
  • 批准号:
    491905
  • 财政年份:
    2023
  • 资助金额:
    $ 4.66万
  • 项目类别:
Exploring how affordable, global people-centred geospatial data products could help planners to evaluate, plan and track progress to UN SDGs 3, 11 and 15
探索经济实惠、以人为本的全球地理空间数据产品如何帮助规划者评估、规划和跟踪联合国可持续发展目标 3、11 和 15 的进展
  • 批准号:
    10050824
  • 财政年份:
    2023
  • 资助金额:
    $ 4.66万
  • 项目类别:
    Collaborative R&D
POSE: Phase II: Growing GRASS OSE for Worldwide Access to Multidisciplinary Geospatial Analytics
POSE:第二阶段:不断发展 GRASS OSE,以便在全球范围内获得多学科地理空间分析
  • 批准号:
    2303651
  • 财政年份:
    2023
  • 资助金额:
    $ 4.66万
  • 项目类别:
    Standard Grant
Machine learning for geospatial intelligence (4647
地理空间智能的机器学习 (4647
  • 批准号:
    2866087
  • 财政年份:
    2023
  • 资助金额:
    $ 4.66万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了