Stochastic Models and Statistical Methodology for Marked Spatio-Temporal Point Processes with Applications to Wildland Fire Management
标记时空点过程的随机模型和统计方法及其在荒地火灾管理中的应用
基本信息
- 批准号:RGPIN-2015-04221
- 负责人:
- 金额:$ 1.02万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2018
- 资助国家:加拿大
- 起止时间:2018-01-01 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
OBJECTIVES: 1) Develop statistical tools, methodology and models that impact wildland fire science and management; 2) Train HQP in modern statistical methods emphasizing collaborative, interdisciplinary, team-based data science; 3) Disseminate advancements in statistics, environmetrics, wildland fire science and management to the scientific community; 4) Transfer advancements to fire management by providing conceptual frameworks, software and decision support systems tools. ***APPROACH: My research is motivated by the scientific study of large, complex marked spatio-temporal point-process and fire-weather data sets. Topics include:***Data Visualization: Visualization tools for spatio-temporal point patterns and their marks will be developed to explore key questions. (Eg: How does a burn reduce ignition risk and how does this dissipate? How do fire lifetimes vary spatially and temporally? Is the clustering of ignitions due to hot spots or stochastic clustering? How can one best visualize model-based information in decision support tools?)***Fire Occurrence: Fine-scale spatio-temporal fire occurrence prediction models for the presence/absence, for counts, and for large escaped fires will be developed. New design schemes will create more relevant measures of exposure and lead to gains in gain statistical efficiency. Methodology will be created to develop models over large spatial extents. Changes to detection effectiveness will be quantified and used to reduce confounding effects when monitoring impacts of climate change.***Fire Duration: Models for individual fire lifetimes and for spatial patterns in fire survival times over large landscapes will be developed. These will characterize the key epochs of a fire's lifetime (eg, time from detection to report, initial attack getaway time, suppression time). A large data set with time-varying covariates for historical fires will be compiled and novel models that forecast future lifetimes over space-time will be created for fire management.***Stochastic Models: Spatio-temporal point process cluster models will be developed to model fire arrivals. Marks will be coupled to these and/or the other ignition models to model fire regime characteristics, such as area burned or the fire-load (the number of fires active on the landscape) over space-time. ***Decision Support Systems: Components from the above set of topics will be incorporated into model-based decision support tools which will better inform fire management. ***IMPACTS: The proposed components will lead to significant advances which further the scientific understanding of wildland fires. Students will be trained in modern statistics in an interdisciplinary, collaborative team setting. This research will impact fire science and fire management, statistics and environmetrics, operations research, and produce technology that impacts insurance and natural resources sectors.*****
目的:1)开发影响荒地火灾科学和管理的统计工具,方法和模型; 2)在现代统计方法方面培训HQP,强调协作,跨学科,基于团队的数据科学; 3)向科学界传播统计学,生态计量学,荒地火灾科学和管理方面的进步; 4)通过提供概念框架、软件和决策支持系统工具,将进步转移到火灾管理上。我的研究是出于对大型,复杂的标记时空点过程和火灾天气数据集的科学研究。主题包括:* 数据可视化:将开发时空点模式及其标记的可视化工具,以探索关键问题。(例如:燃烧如何降低点火风险?火的寿命在空间和时间上是如何变化的?点火的聚集是由于热点还是随机聚集?如何在决策支持工具中最好地可视化基于模型的信息?)*火灾发生率:精细尺度的时空火灾发生预测模型的存在/不存在,计数,并为大型逃逸火灾将被开发。新的设计方案将创造更相关的暴露措施,并提高统计效率。将创建方法来开发大空间范围的模型。检测效率的变化将被量化,并用于在监测气候变化影响时减少混淆效应。火灾持续时间:将建立单个火灾生命期模型和大型景观火灾生存时间的空间模式模型。这些模型将描述火灾生命期的关键时期(例如,从发现到报告的时间,最初的攻击逃逸时间,抑制时间)。将汇编历史火灾随时间变化的协变量的大型数据集,并将为火灾管理创建预测未来时空寿命的新模型。随机模型:将开发时空点过程集群模型,以模拟火灾到达。标记将与这些和/或其他点火模型相结合,以模拟火灾状况特征,例如燃烧面积或火灾负荷(景观上活跃的火灾数量)随时空变化。* 决策支持系统:上述主题的组成部分将被纳入基于模型的决策支持工具,这将更好地为火灾管理提供信息。*** 重要的是:拟议的组成部分将导致重大进展,进一步科学地了解野火。学生将在跨学科的协作团队环境中接受现代统计学培训。这项研究将影响火灾科学和火灾管理,统计和计量学,运筹学,并产生影响保险和自然资源部门的技术。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Woolford, Douglas其他文献
Woolford, Douglas的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Woolford, Douglas', 18)}}的其他基金
Data-Driven Wildland Fire Science with Applications to Fire Management Systems
数据驱动的荒地火灾科学及其在火灾管理系统中的应用
- 批准号:
RGPIN-2021-03920 - 财政年份:2022
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Data-Driven Wildland Fire Science with Applications to Fire Management Systems
数据驱动的荒地火灾科学及其在火灾管理系统中的应用
- 批准号:
RGPIN-2021-03920 - 财政年份:2021
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Stochastic Models and Statistical Methodology for Marked Spatio-Temporal Point Processes with Applications to Wildland Fire Management
标记时空点过程的随机模型和统计方法及其在荒地火灾管理中的应用
- 批准号:
RGPIN-2015-04221 - 财政年份:2019
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Stochastic Models and Statistical Methodology for Marked Spatio-Temporal Point Processes with Applications to Wildland Fire Management
标记时空点过程的随机模型和统计方法及其在荒地火灾管理中的应用
- 批准号:
RGPIN-2015-04221 - 财政年份:2017
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Stochastic Models and Statistical Methodology for Marked Spatio-Temporal Point Processes with Applications to Wildland Fire Management
标记时空点过程的随机模型和统计方法及其在荒地火灾管理中的应用
- 批准号:
RGPIN-2015-04221 - 财政年份:2016
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Stochastic Models and Statistical Methodology for Marked Spatio-Temporal Point Processes with Applications to Wildland Fire Management
标记时空点过程的随机模型和统计方法及其在荒地火灾管理中的应用
- 批准号:
RGPIN-2015-04221 - 财政年份:2015
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Spatiotemporal series of count and proportion data: Climate change and forest fires
计数和比例数据的时空序列:气候变化和森林火灾
- 批准号:
386689-2010 - 财政年份:2014
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Spatiotemporal series of count and proportion data: Climate change and forest fires
计数和比例数据的时空序列:气候变化和森林火灾
- 批准号:
386689-2010 - 财政年份:2013
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Spatiotemporal series of count and proportion data: Climate change and forest fires
计数和比例数据的时空序列:气候变化和森林火灾
- 批准号:
386689-2010 - 财政年份:2012
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Spatiotemporal series of count and proportion data: Climate change and forest fires
计数和比例数据的时空序列:气候变化和森林火灾
- 批准号:
386689-2010 - 财政年份:2011
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
新型手性NAD(P)H Models合成及生化模拟
- 批准号:20472090
- 批准年份:2004
- 资助金额:23.0 万元
- 项目类别:面上项目
相似海外基金
Statistical Approaches for Spatio-Temporal Stochastic Population Models
时空随机总体模型的统计方法
- 批准号:
2015273 - 财政年份:2020
- 资助金额:
$ 1.02万 - 项目类别:
Standard Grant
Statistical Learning Problems with Complex Stochastic Models
复杂随机模型的统计学习问题
- 批准号:
1913149 - 财政年份:2019
- 资助金额:
$ 1.02万 - 项目类别:
Standard Grant
Stochastic Models and Statistical Methodology for Marked Spatio-Temporal Point Processes with Applications to Wildland Fire Management
标记时空点过程的随机模型和统计方法及其在荒地火灾管理中的应用
- 批准号:
RGPIN-2015-04221 - 财政年份:2019
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Singular stochastic PDEs and related statistical physics models
奇异随机偏微分方程和相关统计物理模型
- 批准号:
EP/N021568/2 - 财政年份:2018
- 资助金额:
$ 1.02万 - 项目类别:
Fellowship
Statistical inference for stochastic models
随机模型的统计推断
- 批准号:
5724-2011 - 财政年份:2017
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Stochastic Models and Statistical Methodology for Marked Spatio-Temporal Point Processes with Applications to Wildland Fire Management
标记时空点过程的随机模型和统计方法及其在荒地火灾管理中的应用
- 批准号:
RGPIN-2015-04221 - 财政年份:2017
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Singular stochastic PDEs and related statistical physics models
奇异随机偏微分方程和相关统计物理模型
- 批准号:
EP/N021568/1 - 财政年份:2016
- 资助金额:
$ 1.02万 - 项目类别:
Fellowship
Stochastic Models and Statistical Methodology for Marked Spatio-Temporal Point Processes with Applications to Wildland Fire Management
标记时空点过程的随机模型和统计方法及其在荒地火灾管理中的应用
- 批准号:
RGPIN-2015-04221 - 财政年份:2016
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Stochastic Models and Statistical Methodology for Marked Spatio-Temporal Point Processes with Applications to Wildland Fire Management
标记时空点过程的随机模型和统计方法及其在荒地火灾管理中的应用
- 批准号:
RGPIN-2015-04221 - 财政年份:2015
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Statistical mechanical study of stochastic models for time correlation in stock markets
股票市场时间相关性随机模型的统计力学研究
- 批准号:
15K01190 - 财政年份:2015
- 资助金额:
$ 1.02万 - 项目类别:
Grant-in-Aid for Scientific Research (C)