Nonparametric Function Estimation
非参数函数估计
基本信息
- 批准号:RGPIN-2015-04058
- 负责人:
- 金额:$ 0.8万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2019
- 资助国家:加拿大
- 起止时间:2019-01-01 至 2020-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Statistical Function Estimation is extremely important in many areas of scientific research. At the heart of many problems is the need to construct a curve that summarizes some important aspect of a set of data, be it a histogram, a survival curve or a response curve. Doing this well is of utmost importance for experimenters, but also for administrators, decision makers and government officials of all kinds. It is often also important that the methods used and provided solutions be simple to interpret and generally valid, without imposing theoretical restrictions and/or assumptions that are difficult or even impossible to verify in practice. Linked to this is also the need for objective methodologies that are not too dependent on a specific form of model, again something that can be hard to justify. This objectivity takes many forms, but naturally leads to studying the so-called nonparametric methods of function estimation.***For instance, one of the simplest examples of this is perhaps the study of linear regression problems. Two important aspects of how regression problems are often approached, are the requirement of normality for the random error distribution and the assumption that the relationship between the response variable and the measured covariates is linear. In some setups, the assumption of normality is known not to be met. In other setups, the relationship between the response variable and the measured covariates cannot be assumed to be linear, and in fact, cannot even be assumed to be known. A nonparametric solution to this problem would be to construct an estimate of the function linking the response variable to the covariates that does not assume any specific functional form (like linearity) and makes as few assumptions as possible about the distribution of the random error.***The main thrust of this proposal is to develop and better understand nonparametric approaches, such as the one described above, to a range of different statistical function estimation problems. We study modern takes on some problems, which are especially relevant given the advent of big data. For instance, we consider some work on contingency tables in the context known as sparse asymptotics, where the complexity of problems grows as more data are collected. We also study a new family of functional regression models, where functions play the role of covariates. These models allow one to establish a link between a response variable and the full distribution of some population characteristics. Finally, we study the impact, on standard estimation methods, of using so-called rank-based sampling designs for data collection. We also develop new methods of function estimation specifically adapted to these alternate sampling plans.
统计函数估计在科学研究的许多领域都是极其重要的。许多问题的核心是需要构建一条曲线来总结一组数据的一些重要方面,无论是直方图,生存曲线还是响应曲线。做好这一点对实验者至关重要,对管理者、决策者和各种政府官员也至关重要。通常还重要的是,所使用的方法和提供的解决方案易于解释并且通常有效,而不施加难以甚至不可能在实践中验证的理论限制和/或假设。与此相关的是,还需要不太依赖于特定形式的模型的客观方法,这也是很难证明的。这种客观性有多种形式,但自然会导致研究所谓的函数估计的非参数方法。例如,这方面最简单的例子之一可能是线性回归问题的研究。回归问题的两个重要方面是随机误差分布的正态性要求和响应变量与测量协变量之间的关系是线性的假设。在某些设置中,已知不满足正态性假设。在其他设置中,不能假设响应变量和测量协变量之间的关系是线性的,事实上,甚至不能假设已知。这个问题的非参数解决方案是构造一个将响应变量与协变量联系起来的函数的估计值,该估计值不假设任何特定的函数形式(如线性),并且尽可能少地假设随机误差的分布。这个建议的主旨是开发和更好地理解非参数方法,如上述方法,一系列不同的统计函数估计问题。我们研究现代需要一些问题,这是特别相关的大数据的出现。例如,我们考虑在称为稀疏渐近的上下文中关于列联表的一些工作,其中问题的复杂性随着收集的数据的增加而增加。我们还研究了一个新的家庭的功能回归模型,其中功能发挥作用的协变量。这些模型使人们能够建立一个响应变量和一些人口特征的全面分布之间的联系。最后,我们研究的影响,标准的估计方法,使用所谓的基于秩的抽样设计的数据收集。我们还开发了新的函数估计方法,专门适用于这些替代抽样计划。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Leblanc, Alexandre其他文献
On estimating distribution functions using Bernstein polynomials
- DOI:
10.1007/s10463-011-0339-4 - 发表时间:
2012-10-01 - 期刊:
- 影响因子:1
- 作者:
Leblanc, Alexandre - 通讯作者:
Leblanc, Alexandre
A bias-reduced approach to density estimation using Bernstein polynomials
- DOI:
10.1080/10485250903318107 - 发表时间:
2010-01-01 - 期刊:
- 影响因子:1.2
- 作者:
Leblanc, Alexandre - 通讯作者:
Leblanc, Alexandre
Disformal mappings of spherical DHOST geometries
- DOI:
10.1088/1475-7516/2021/08/037 - 发表时间:
2021-08-01 - 期刊:
- 影响因子:6.4
- 作者:
Faraoni, Valerio;Leblanc, Alexandre - 通讯作者:
Leblanc, Alexandre
Curious case of the Buchdahl-Land-Sultana-Wyman-Ibanez-Sanz spacetime
- DOI:
10.1103/physrevd.105.024030 - 发表时间:
2022-01-11 - 期刊:
- 影响因子:5
- 作者:
Faraoni, Valerio;Jose, Sonia;Leblanc, Alexandre - 通讯作者:
Leblanc, Alexandre
When can we compute analytically lookback time, age of the universe, and luminosity distance?
- DOI:
10.1140/epjc/s10052-022-10519-2 - 发表时间:
2022 - 期刊:
- 影响因子:4.4
- 作者:
Jose, Sonia;Leblanc, Alexandre;Faraoni, Valerio - 通讯作者:
Faraoni, Valerio
Leblanc, Alexandre的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Leblanc, Alexandre', 18)}}的其他基金
Nonparametric Statistics and Sports Analytics
非参数统计和体育分析
- 批准号:
RGPIN-2021-03345 - 财政年份:2022
- 资助金额:
$ 0.8万 - 项目类别:
Discovery Grants Program - Individual
Nonparametric Statistics and Sports Analytics
非参数统计和体育分析
- 批准号:
RGPIN-2021-03345 - 财政年份:2021
- 资助金额:
$ 0.8万 - 项目类别:
Discovery Grants Program - Individual
Nonparametric Function Estimation
非参数函数估计
- 批准号:
RGPIN-2015-04058 - 财政年份:2018
- 资助金额:
$ 0.8万 - 项目类别:
Discovery Grants Program - Individual
Nonparametric Function Estimation
非参数函数估计
- 批准号:
RGPIN-2015-04058 - 财政年份:2017
- 资助金额:
$ 0.8万 - 项目类别:
Discovery Grants Program - Individual
Nonparametric Function Estimation
非参数函数估计
- 批准号:
RGPIN-2015-04058 - 财政年份:2016
- 资助金额:
$ 0.8万 - 项目类别:
Discovery Grants Program - Individual
Nonparametric Function Estimation
非参数函数估计
- 批准号:
RGPIN-2015-04058 - 财政年份:2015
- 资助金额:
$ 0.8万 - 项目类别:
Discovery Grants Program - Individual
Nonparametric and semi-parametric function estimation
非参数和半参数函数估计
- 批准号:
293298-2009 - 财政年份:2014
- 资助金额:
$ 0.8万 - 项目类别:
Discovery Grants Program - Individual
L'écologie moléculaire au service de l'étude de la prédation intraguilde
分子生物学与内部捕食研究服务
- 批准号:
433338-2012 - 财政年份:2012
- 资助金额:
$ 0.8万 - 项目类别:
University Undergraduate Student Research Awards
Nonparametric and semi-parametric function estimation
非参数和半参数函数估计
- 批准号:
293298-2009 - 财政年份:2012
- 资助金额:
$ 0.8万 - 项目类别:
Discovery Grants Program - Individual
Nonparametric and semi-parametric function estimation
非参数和半参数函数估计
- 批准号:
293298-2009 - 财政年份:2011
- 资助金额:
$ 0.8万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
原生动物四膜虫生殖小核(germline nucleus)体功能(somatic function)的分子基础研究
- 批准号:31872221
- 批准年份:2018
- 资助金额:60.0 万元
- 项目类别:面上项目
相似海外基金
Nonparametric Function Estimation
非参数函数估计
- 批准号:
RGPIN-2015-04058 - 财政年份:2018
- 资助金额:
$ 0.8万 - 项目类别:
Discovery Grants Program - Individual
CAREER: Nonparametric function estimation: shape constraints, adaptation, inference and beyond
职业:非参数函数估计:形状约束、适应、推理等
- 批准号:
1654589 - 财政年份:2017
- 资助金额:
$ 0.8万 - 项目类别:
Continuing Grant
Nonparametric Function Estimation
非参数函数估计
- 批准号:
RGPIN-2015-04058 - 财政年份:2017
- 资助金额:
$ 0.8万 - 项目类别:
Discovery Grants Program - Individual
Nonparametric Function Estimation
非参数函数估计
- 批准号:
RGPIN-2015-04058 - 财政年份:2016
- 资助金额:
$ 0.8万 - 项目类别:
Discovery Grants Program - Individual
Nonparametric Function Estimation
非参数函数估计
- 批准号:
RGPIN-2015-04058 - 财政年份:2015
- 资助金额:
$ 0.8万 - 项目类别:
Discovery Grants Program - Individual
Nonparametric and semi-parametric function estimation
非参数和半参数函数估计
- 批准号:
293298-2009 - 财政年份:2014
- 资助金额:
$ 0.8万 - 项目类别:
Discovery Grants Program - Individual
Nonparametric and semi-parametric function estimation
非参数和半参数函数估计
- 批准号:
293298-2009 - 财政年份:2012
- 资助金额:
$ 0.8万 - 项目类别:
Discovery Grants Program - Individual
Nonparametric and semi-parametric function estimation
非参数和半参数函数估计
- 批准号:
293298-2009 - 财政年份:2011
- 资助金额:
$ 0.8万 - 项目类别:
Discovery Grants Program - Individual
Nonparametric and semi-parametric function estimation
非参数和半参数函数估计
- 批准号:
293298-2009 - 财政年份:2010
- 资助金额:
$ 0.8万 - 项目类别:
Discovery Grants Program - Individual
Nonparametric and semi-parametric function estimation
非参数和半参数函数估计
- 批准号:
293298-2009 - 财政年份:2009
- 资助金额:
$ 0.8万 - 项目类别:
Discovery Grants Program - Individual