Investigations in the algebraic and geometric theory of quadratic and hermitian forms
二次和埃尔米特形式的代数和几何理论研究
基本信息
- 批准号:DGECR-2019-00403
- 负责人:
- 金额:$ 0.91万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Launch Supplement
- 财政年份:2019
- 资助国家:加拿大
- 起止时间:2019-01-01 至 2020-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
No summary - Aucun sommaire
没有摘要-Aucun Sommaire
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Scully, Stephen其他文献
Scully, Stephen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Scully, Stephen', 18)}}的其他基金
Investigations in the algebraic and geometric theory of quadratic and hermitian forms
二次和埃尔米特形式的代数和几何理论研究
- 批准号:
RGPIN-2019-05607 - 财政年份:2022
- 资助金额:
$ 0.91万 - 项目类别:
Discovery Grants Program - Individual
Investigations in the algebraic and geometric theory of quadratic and hermitian forms
二次和埃尔米特形式的代数和几何理论研究
- 批准号:
RGPIN-2019-05607 - 财政年份:2021
- 资助金额:
$ 0.91万 - 项目类别:
Discovery Grants Program - Individual
Investigations in the algebraic and geometric theory of quadratic and hermitian forms
二次和埃尔米特形式的代数和几何理论研究
- 批准号:
RGPIN-2019-05607 - 财政年份:2020
- 资助金额:
$ 0.91万 - 项目类别:
Discovery Grants Program - Individual
Investigations in the algebraic and geometric theory of quadratic and hermitian forms
二次和埃尔米特形式的代数和几何理论研究
- 批准号:
RGPIN-2019-05607 - 财政年份:2019
- 资助金额:
$ 0.91万 - 项目类别:
Discovery Grants Program - Individual
Catalytic functionalization of hydrocarbons via double C-H bond activation
通过双 C-H 键活化实现碳氢化合物的催化功能化
- 批准号:
317218-2007 - 财政年份:2008
- 资助金额:
$ 0.91万 - 项目类别:
Postgraduate Scholarships - Doctoral
Catalytic functionalization of hydrocarbons via double C-H bond activation
通过双 C-H 键活化实现碳氢化合物的催化功能化
- 批准号:
317218-2007 - 财政年份:2007
- 资助金额:
$ 0.91万 - 项目类别:
Postgraduate Scholarships - Doctoral
Polymer/Titanate nanocomposites as electrolyte materials for lithium ion battery applications
聚合物/钛酸盐纳米复合材料作为锂离子电池电解质材料
- 批准号:
317218-2006 - 财政年份:2006
- 资助金额:
$ 0.91万 - 项目类别:
Postgraduate Scholarships - Master's
Polymer/Titanate nanocomposites as electrolyte materials for lithium ion battery applications
聚合物/钛酸盐纳米复合材料作为锂离子电池电解质材料
- 批准号:
317218-2005 - 财政年份:2005
- 资助金额:
$ 0.91万 - 项目类别:
Postgraduate Scholarships - Master's
相似国自然基金
基于几何代数表示和滑动窗口的惯性导航系统滤波方法
- 批准号:62303310
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
代数几何和算术几何中的Hodge理论与Higgs丛理论
- 批准号:12331002
- 批准年份:2023
- 资助金额:193 万元
- 项目类别:重点项目
离散限制性问题及其在数论与PDEs中的应用
- 批准号:12226404
- 批准年份:2022
- 资助金额:20.0 万元
- 项目类别:数学天元基金项目
加权射影直线凝聚层范畴的几何模型与iHall代数
- 批准号:12271448
- 批准年份:2022
- 资助金额:45.00 万元
- 项目类别:面上项目
热带化及丛代数在Poisson几何中的应用
- 批准号:12201438
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
相似海外基金
Complete reducibility, geometric invariant theory, spherical buildings: a uniform approach to representations of algebraic groups
完全可约性、几何不变量理论、球形建筑:代数群表示的统一方法
- 批准号:
22K13904 - 财政年份:2023
- 资助金额:
$ 0.91万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The geometric and algebraic properties of 4-manifolds
4-流形的几何和代数性质
- 批准号:
2891032 - 财政年份:2023
- 资助金额:
$ 0.91万 - 项目类别:
Studentship
Fusion of enumerative and algebraic geometry and exploration of quasi-geometric invariants
枚举几何与代数几何的融合以及准几何不变量的探索
- 批准号:
23K17298 - 财政年份:2023
- 资助金额:
$ 0.91万 - 项目类别:
Grant-in-Aid for Challenging Research (Pioneering)
LEAPS-MPS: Combinatorics from an Algebraic and Geometric Lens
LEAPS-MPS:代数和几何透镜的组合学
- 批准号:
2211379 - 财政年份:2022
- 资助金额:
$ 0.91万 - 项目类别:
Standard Grant
Investigations in the algebraic and geometric theory of quadratic and hermitian forms
二次和埃尔米特形式的代数和几何理论研究
- 批准号:
RGPIN-2019-05607 - 财政年份:2022
- 资助金额:
$ 0.91万 - 项目类别:
Discovery Grants Program - Individual