Distributed and Scalable Privacy-Preserving Data Mining Techniques for Big Data
分布式、可扩展的大数据隐私保护数据挖掘技术
基本信息
- 批准号:RGPIN-2014-04520
- 负责人:
- 金额:$ 1.09万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2019
- 资助国家:加拿大
- 起止时间:2019-01-01 至 2020-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
It is impossible to ignore the importance of preserving privacy especially in the era of Big Data in various fields, such as health, business, government and social networks. With the immense growth in the ability to store data, the increased computing power, advances in data analytics, and very large increases in the number of devices and sensors connected to the internet and dedicated networks, there has been an increase in privacy and security risks. Typical privacy-preserving techniques used with small data sets, such as de-identification, access control, secure computation and data encryption cannot be simply used with Big Data. Therefore, it is crucial to create a balance between beneficial uses of Big Data and individual privacy. Dealing with privacy issues in the research area of Big Data, like other aspects of Big Data such as data collection, storage, analysis, and result dissemination, has become a challenge.**This research program plans to propose and develop new privacy-preserving techniques and extend the existing ones in data mining and statistical analysis methods that are scalable and incremental, such that they can be practically applied on Big Data, while minimizing the negative effects of applying these techniques on the overall performance, the accuracy and utility of the extracted knowledge. The findings and outputs of this research program will be applied on genome-environment-associations in type 2 diabetes to uncover gene-environment interactions associated with this highly common disease as proof of concept and test using real data.**The long-term objective of this research is to develop scalable privacy-preserving methods and protocols for data mining algorithms on Big Data. The research will focus on practical methods and techniques for privacy-preserving protocols on both simulated and real data (type 2 diabetes). The findings will be useful for comparison in similarly complex applications in health, business and government. In order to utilize the type 2 diabetes dataset it will be necessary to preserve the individual's privacy while allowing meaningful data mining and computational operations.**The results will extend the set of secure protocols to cover statistical analysis and data mining methods, and the proposed techniques will be applicable in other areas of health, business, and government where Big Data are used. Therefore, the focus of the short-term objectives will be to propose, design and implement efficient privacy-preserving tools, using new and existing privacy-preserving techniques applied to simulated and type 2 diabetes data. The specific short-term objectives of this research are to (1) indicate which steps (from data gathering to dissemination of results) of Big Data require privacy protection and where currently available privacy-preserving techniques are used; (2) identify the statistical and data-mining techniques that are currently used on genetic data; (3) develop privacy-protected data-mining and computational procedures and algorithms for these applications and (4) test these privacy-protected algorithms on simulated Big Data and type 2 diabetes datasets.
在健康、商业、政府和社交网络等各个领域的大数据时代,保护隐私的重要性不容忽视。随着存储数据能力的巨大增长,计算能力的增强,数据分析的进步,以及连接到互联网和专用网络的设备和传感器数量的大幅增加,隐私和安全风险也在增加。用于小数据集的典型隐私保护技术,如去识别、访问控制、安全计算和数据加密,不能简单地用于大数据。因此,在大数据的有益使用和个人隐私之间取得平衡至关重要。处理大数据研究领域的隐私问题,就像处理大数据的其他方面,如数据的收集、存储、分析和结果传播一样,已经成为一个挑战。**本研究项目计划提出并开发新的隐私保护技术,并对数据挖掘和统计分析方法中现有的可扩展和增量的隐私保护技术进行扩展,使其能够实际应用于大数据,同时最大限度地减少应用这些技术对整体性能、提取知识的准确性和实用性的负面影响。该研究项目的发现和成果将应用于2型糖尿病的基因组-环境关联,以揭示与这种高度常见疾病相关的基因-环境相互作用,作为概念的证明和使用真实数据的测试。**本研究的长期目标是为大数据数据挖掘算法开发可扩展的隐私保护方法和协议。研究将集中在模拟和真实数据(2型糖尿病)的隐私保护协议的实用方法和技术上。研究结果将有助于在卫生、商业和政府领域类似的复杂应用中进行比较。为了利用2型糖尿病数据集,有必要在允许有意义的数据挖掘和计算操作的同时保护个人隐私。**结果将扩展安全协议集,以涵盖统计分析和数据挖掘方法,并且提议的技术将适用于使用大数据的其他卫生、商业和政府领域。因此,短期目标的重点将是提出、设计和实施有效的隐私保护工具,使用新的和现有的隐私保护技术应用于模拟和2型糖尿病数据。本研究的具体短期目标是:(1)表明大数据的哪些步骤(从数据收集到结果传播)需要隐私保护,以及在哪些地方使用当前可用的隐私保护技术;(2)确定目前用于遗传数据的统计和数据挖掘技术;(3)为这些应用开发隐私保护的数据挖掘和计算程序和算法;(4)在模拟大数据和2型糖尿病数据集上测试这些隐私保护算法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Samet, Saeed其他文献
Community-based influence maximization in social networks under a competitive linear threshold model
- DOI:
10.1016/j.knosys.2017.07.029 - 发表时间:
2017-10-15 - 期刊:
- 影响因子:8.8
- 作者:
Bozorgi, Arastoo;Samet, Saeed;Wareham, Todd - 通讯作者:
Wareham, Todd
A Protocol for the Secure Linking of Registries for HPV Surveillance
- DOI:
10.1371/journal.pone.0039915 - 发表时间:
2012-07-02 - 期刊:
- 影响因子:3.7
- 作者:
El Emam, Khaled;Samet, Saeed;Essex, Aleksander - 通讯作者:
Essex, Aleksander
Samet, Saeed的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Samet, Saeed', 18)}}的其他基金
Distributed and Scalable Privacy-Preserving Data Mining Techniques for Big Data
分布式、可扩展的大数据隐私保护数据挖掘技术
- 批准号:
RGPIN-2014-04520 - 财政年份:2018
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Distributed and Scalable Privacy-Preserving Data Mining Techniques for Big Data
分布式、可扩展的大数据隐私保护数据挖掘技术
- 批准号:
RGPIN-2014-04520 - 财政年份:2017
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Distributed and Scalable Privacy-Preserving Data Mining Techniques for Big Data
分布式、可扩展的大数据隐私保护数据挖掘技术
- 批准号:
RGPIN-2014-04520 - 财政年份:2017
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Continuous Proof of Presence based on Touchscreen Devices Interactions and Signals
基于触摸屏设备交互和信号的持续存在证明
- 批准号:
518198-2017 - 财政年份:2017
- 资助金额:
$ 1.09万 - 项目类别:
Engage Grants Program
Distributed and Scalable Privacy-Preserving Data Mining Techniques for Big Data
分布式、可扩展的大数据隐私保护数据挖掘技术
- 批准号:
RGPIN-2014-04520 - 财政年份:2016
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Distributed and Scalable Privacy-Preserving Data Mining Techniques for Big Data
分布式、可扩展的大数据隐私保护数据挖掘技术
- 批准号:
RGPIN-2014-04520 - 财政年份:2015
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Distributed and Scalable Privacy-Preserving Data Mining Techniques for Big Data
分布式、可扩展的大数据隐私保护数据挖掘技术
- 批准号:
RGPIN-2014-04520 - 财政年份:2014
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
相似海外基金
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
- 批准号:
2412357 - 财政年份:2024
- 资助金额:
$ 1.09万 - 项目类别:
Standard Grant
NSF-IITP: AI/ML-Enabled Scalable and Privacy-Preserving 6G Space-Air-Ground Integrated Network Operation
NSF-IITP:支持 AI/ML 的可扩展且保护隐私的 6G 天地一体化网络运营
- 批准号:
2242412 - 财政年份:2023
- 资助金额:
$ 1.09万 - 项目类别:
Standard Grant
CAREER: Scalable Consensus Protocol Design with Accountability and Privacy under Practical Failure Models
职业:在实际失败模型下具有责任和隐私的可扩展共识协议设计
- 批准号:
2237814 - 财政年份:2023
- 资助金额:
$ 1.09万 - 项目类别:
Continuing Grant
IMR: MT: NetFlex: A Flexible Scalable & Privacy-Preserving Network Measurement Platform to Iteratively Collect Multi-modal Multi-view Network Data from Access Networks
IMR:MT:NetFlex:灵活的可扩展
- 批准号:
2323229 - 财政年份:2023
- 资助金额:
$ 1.09万 - 项目类别:
Continuing Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
- 批准号:
2243053 - 财政年份:2023
- 资助金额:
$ 1.09万 - 项目类别:
Standard Grant
Scalable & Accountable Privacy-Preserving Blockchain with Enhanced Security
可扩展
- 批准号:
DP220101234 - 财政年份:2023
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Projects
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
- 批准号:
2243052 - 财政年份:2023
- 资助金额:
$ 1.09万 - 项目类别:
Standard Grant
Collaborative Research: PPoSS: Planning: Integrated Scalable Platform for Privacy-aware Collaborative Learning and Inference
协作研究:PPoSS:规划:用于隐私意识协作学习和推理的集成可扩展平台
- 批准号:
2029040 - 财政年份:2020
- 资助金额:
$ 1.09万 - 项目类别:
Standard Grant
Collaborative Research: PPoSS: Planning: Integrated Scalable Platform for Privacy-aware Collaborative Learning and Inference
协作研究:PPoSS:规划:用于隐私意识协作学习和推理的集成可扩展平台
- 批准号:
2028839 - 财政年份:2020
- 资助金额:
$ 1.09万 - 项目类别:
Standard Grant
Collaborative Research: PPoSS: Planning: Integrated Scalable Platform for Privacy-aware Collaborative Learning and Inference
协作研究:PPoSS:规划:用于隐私意识协作学习和推理的集成可扩展平台
- 批准号:
2029004 - 财政年份:2020
- 资助金额:
$ 1.09万 - 项目类别:
Standard Grant