Mathematical theory and computational methods for seismic full waveform inversion problems
地震全波形反演问题的数学理论与计算方法
基本信息
- 批准号:RGPIN-2019-04830
- 负责人:
- 金额:$ 1.24万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2019
- 资助国家:加拿大
- 起止时间:2019-01-01 至 2020-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
During the crude price downturn over the last few years, the energy industry has been hit hard, particularly the oil service companies. Meanwhile, governments at all levels have introduced stricter environmental protection policies. Therefore, cost-effective approaches with minimal environmental impact are important for hydrocarbon exploration, which requires an accurate high-resolution subsurface image of the potential oil field. Seismic full waveform inversion (FWI) is a powerful model-based data fitting procedure that has been widely used in exploration geophysics to obtain high-resolution subsurface properties of the earth. FWI is able to create high-resolution subsurface images of the earth up to half of the propagated wavelength. Moreover, it can estimate multiple parameters simultaneously and requires minimal preprocessing of the recorded seismic data. However, FWI suffers from a series of challenges, such as sensitivity on initial model, high computational cost, slow convergence, local minima, cycle-skipping, to name a few. These challenges hinder the further widespread application and acceptance of this method in the field of exploration physics. ******This research program aims to develop advanced mathematical theory and efficient computational methods to resolve these issues of FWI. To this end, we will formulate FWI as a partial differential equation (PDE)-constrained nonlinear optimization problem, where the misfit function measuring the difference between observational data and synthetic data is iteratively minimized by gradient-based optimization algorithms. The constraint PDE is a seismic wave equation which can be Helmholtz equation and acoustic/elastic wave equation. We will focus on several important aspects, such as building accurate initial models for FWI, development and analysis of efficient and higher-order numerical algorithms and preconditioners to reduce computational cost. Moreover, various regularization strategies will be studied and applied to mitigate the cycle-skipping and local minima issues.******Through the research program, we will provide students and postdoctoral fellows with high-quality training to prepare them for the competitive job market upon the completion of training, and to meet the increasing demand for highly qualified personnel from the energy industry and information technology. Our research result will also provide geoscientists and petroleum engineers with an economical and fast option to infer subsurface geological properties accurately.********
在过去几年的原油价格下降期间,能源行业受到了艰难的打击,尤其是石油服务公司。同时,各级政府都引入了更严格的环境保护政策。因此,具有最小环境影响的成本效益的方法对于碳氢化合物勘探很重要,这需要对潜在油田的准确高分辨率地下图像。地震全波形反演(FWI)是一种强大的基于模型的数据拟合程序,已广泛用于勘探地球物理学,以获得地球的高分辨率地下特性。 FWI能够创建地球的高分辨率地下图像,最多是传播波长的一半。此外,它可以同时估算多个参数,并且需要对记录的地震数据进行最小化的预处理。但是,FWI面临一系列挑战,例如对初始模型的敏感性,高计算成本,缓慢的收敛性,本地最小值,循环滑水,仅举几例。这些挑战阻碍了该方法在探索物理学领域的进一步广泛应用和接受。 *****该研究计划旨在开发先进的数学理论和有效的计算方法来解决FWI的这些问题。为此,我们将将FWI作为部分微分方程(PDE)构成的非线性优化问题,其中通过基于梯度的优化算法迭代地最小化了观察数据和合成数据之间差异的失配函数。约束PDE是一个地震波方程,可以是Helmholtz方程和声学/弹性波方程。我们将重点关注几个重要方面,例如为FWI建立准确的初始模型,开发和分析有效,高阶数值算法和预处理,以降低计算成本。此外,将研究并应用各种正规化策略,以减轻自行车的和本地的最小问题。******通过研究计划,我们将为学生和博士后研究员提供高质量的培训,以在培训完成后为竞争性就业市场做好准备,并满足对能源行业和能源行业资格人工越来越多的需求。 我们的研究结果还将为地球科学家和石油工程师提供经济和快速的选择,以准确推断地下地质特性。**********
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Liao, Wenyuan其他文献
Polarization control and mode optimization of 850 nm multi-mode VCSELs using surface grating
- DOI:
10.1007/s00340-020-07570-w - 发表时间:
2021-02-01 - 期刊:
- 影响因子:2.1
- 作者:
Liao, Wenyuan;Li, Chuanchuan;Tan, Manqing - 通讯作者:
Tan, Manqing
Behavior of continuous steel-concrete composite beams with web openings
腹板开孔连续钢-混凝土组合梁的性能
- DOI:
10.1007/s13296-015-1218-2 - 发表时间:
2015-12 - 期刊:
- 影响因子:1.5
- 作者:
Li, Longqi;Liao, Wenyuan;Wang, Jun;Zhou, Donghua - 通讯作者:
Zhou, Donghua
Modeling of particle removal using non-contact brush scrubbing in post-CMP cleaning processes
- DOI:
10.1080/00218460600766566 - 发表时间:
2006-06-01 - 期刊:
- 影响因子:2.2
- 作者:
Chein, Reiyu;Liao, Wenyuan - 通讯作者:
Liao, Wenyuan
Liao, Wenyuan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Liao, Wenyuan', 18)}}的其他基金
Mathematical theory and computational methods for seismic full waveform inversion problems
地震全波形反演问题的数学理论与计算方法
- 批准号:
RGPIN-2019-04830 - 财政年份:2022
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
Mathematical theory and computational methods for seismic full waveform inversion problems
地震全波形反演问题的数学理论与计算方法
- 批准号:
RGPIN-2019-04830 - 财政年份:2021
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
Mathematical theory and computational methods for seismic full waveform inversion problems
地震全波形反演问题的数学理论与计算方法
- 批准号:
RGPIN-2019-04830 - 财政年份:2020
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
An integrated workflow for oil-bearing prediction using seismic information and well log data
使用地震信息和测井数据进行含油预测的集成工作流程
- 批准号:
532227-2018 - 财政年份:2020
- 资助金额:
$ 1.24万 - 项目类别:
Collaborative Research and Development Grants
An integrated workflow for oil-bearing prediction using seismic information and well log data
使用地震信息和测井数据进行含油预测的集成工作流程
- 批准号:
532227-2018 - 财政年份:2019
- 资助金额:
$ 1.24万 - 项目类别:
Collaborative Research and Development Grants
Adjoint state method and numerical algorithms for full waveform inversion of seismic data
地震数据全波形反演伴随状态法与数值算法
- 批准号:
RGPIN-2014-04913 - 财政年份:2018
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
Adjoint state method and numerical algorithms for full waveform inversion of seismic data
地震数据全波形反演伴随状态法和数值算法
- 批准号:
RGPIN-2014-04913 - 财政年份:2017
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
Adjoint state method and numerical algorithms for full waveform inversion of seismic data
地震数据全波形反演伴随状态法与数值算法
- 批准号:
RGPIN-2014-04913 - 财政年份:2016
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
Adjoint state method and numerical algorithms for full waveform inversion of seismic data
地震数据全波形反演伴随状态法和数值算法
- 批准号:
RGPIN-2014-04913 - 财政年份:2015
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
Development of a new fast Fourier transform algorithms for seismic data regularization
开发用于地震数据正则化的新型快速傅里叶变换算法
- 批准号:
468680-2014 - 财政年份:2014
- 资助金额:
$ 1.24万 - 项目类别:
Engage Plus Grants Program
相似国自然基金
含时变阶数分数阶扩散方程中反问题的数学理论分析和数值计算方法
- 批准号:12271197
- 批准年份:2022
- 资助金额:45.00 万元
- 项目类别:面上项目
含时变阶数分数阶扩散方程中反问题的数学理论分析和数值计算方法
- 批准号:
- 批准年份:2022
- 资助金额:45 万元
- 项目类别:面上项目
激子玻色爱因斯坦凝聚的数学理论与计算方法
- 批准号:12171041
- 批准年份:2021
- 资助金额:51 万元
- 项目类别:面上项目
反问题计算方法与数学理论
- 批准号:11925104
- 批准年份:2019
- 资助金额:280 万元
- 项目类别:国家杰出青年科学基金
预测计算神经环路的数学建模研究
- 批准号:11901557
- 批准年份:2019
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Learn Systems Biology Equations From Snapshot Single Cell Genomic Data
从快照单细胞基因组数据学习系统生物学方程
- 批准号:
10736507 - 财政年份:2023
- 资助金额:
$ 1.24万 - 项目类别:
Mathematical theory and computational methods for seismic full waveform inversion problems
地震全波形反演问题的数学理论与计算方法
- 批准号:
RGPIN-2019-04830 - 财政年份:2022
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
Mathematical modeling of Mycobacterium tuberculosis dissemination
结核分枝杆菌传播的数学模型
- 批准号:
10364119 - 财政年份:2022
- 资助金额:
$ 1.24万 - 项目类别:
Theory and methods in mathematical and computational finance
数学和计算金融的理论和方法
- 批准号:
RGPIN-2021-04112 - 财政年份:2022
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
Mathematical modeling of Mycobacterium tuberculosis dissemination
结核分枝杆菌传播的数学模型
- 批准号:
10612718 - 财政年份:2022
- 资助金额:
$ 1.24万 - 项目类别: