Mathematical theory and computational methods for seismic full waveform inversion problems
地震全波形反演问题的数学理论与计算方法
基本信息
- 批准号:RGPIN-2019-04830
- 负责人:
- 金额:$ 1.24万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2019
- 资助国家:加拿大
- 起止时间:2019-01-01 至 2020-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
During the crude price downturn over the last few years, the energy industry has been hit hard, particularly the oil service companies. Meanwhile, governments at all levels have introduced stricter environmental protection policies. Therefore, cost-effective approaches with minimal environmental impact are important for hydrocarbon exploration, which requires an accurate high-resolution subsurface image of the potential oil field. Seismic full waveform inversion (FWI) is a powerful model-based data fitting procedure that has been widely used in exploration geophysics to obtain high-resolution subsurface properties of the earth. FWI is able to create high-resolution subsurface images of the earth up to half of the propagated wavelength. Moreover, it can estimate multiple parameters simultaneously and requires minimal preprocessing of the recorded seismic data. However, FWI suffers from a series of challenges, such as sensitivity on initial model, high computational cost, slow convergence, local minima, cycle-skipping, to name a few. These challenges hinder the further widespread application and acceptance of this method in the field of exploration physics. ******This research program aims to develop advanced mathematical theory and efficient computational methods to resolve these issues of FWI. To this end, we will formulate FWI as a partial differential equation (PDE)-constrained nonlinear optimization problem, where the misfit function measuring the difference between observational data and synthetic data is iteratively minimized by gradient-based optimization algorithms. The constraint PDE is a seismic wave equation which can be Helmholtz equation and acoustic/elastic wave equation. We will focus on several important aspects, such as building accurate initial models for FWI, development and analysis of efficient and higher-order numerical algorithms and preconditioners to reduce computational cost. Moreover, various regularization strategies will be studied and applied to mitigate the cycle-skipping and local minima issues.******Through the research program, we will provide students and postdoctoral fellows with high-quality training to prepare them for the competitive job market upon the completion of training, and to meet the increasing demand for highly qualified personnel from the energy industry and information technology. Our research result will also provide geoscientists and petroleum engineers with an economical and fast option to infer subsurface geological properties accurately.********
在过去几年原油价格低迷期间,能源行业受到重创,特别是石油服务公司。与此同时,各级政府出台了更严格的环保政策。因此,具有最小环境影响的具有成本效益的方法对于碳氢化合物勘探是重要的,这需要潜在油田的准确的高分辨率地下图像。地震全波形反演(FWI)是一种基于模型的数据拟合方法,已广泛应用于勘探地球物理学中,以获得高分辨率的地下属性。 FWI能够创建高达传播波长一半的地球高分辨率地下图像。此外,它可以同时估计多个参数,并且需要对记录的地震数据进行最少的预处理。然而,FWI算法存在对初始模型敏感、计算量大、收敛速度慢、易陷入局部极小、易出现跳周期等问题。这些挑战阻碍了该方法在勘探物理领域的进一步广泛应用和接受。** 该研究项目旨在开发先进的数学理论和高效的计算方法来解决FWI的这些问题。为此,我们将制定FWI作为一个偏微分方程(PDE)约束的非线性优化问题,测量观测数据和合成数据之间的差异的失配函数迭代最小化基于梯度的优化算法。约束偏微分方程是一个地震波方程,可以是亥姆霍兹方程和声波/弹性波方程。我们将专注于几个重要的方面,如建立精确的初始模型FWI,高效和高阶数值算法和预处理器,以减少计算成本的发展和分析。此外,将研究并应用各种正则化策略来减轻循环跳跃和局部最小值问题。通过研究计划,我们将为学生和博士后研究员提供高质量的培训,使他们在完成培训后为竞争激烈的就业市场做好准备,并满足能源行业和信息技术对高素质人才日益增长的需求。 我们的研究成果也将为地球科学家和石油工程师提供一个经济和快速的选择,以准确地推断地下地质性质。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Liao, Wenyuan其他文献
Polarization control and mode optimization of 850 nm multi-mode VCSELs using surface grating
- DOI:
10.1007/s00340-020-07570-w - 发表时间:
2021-02-01 - 期刊:
- 影响因子:2.1
- 作者:
Liao, Wenyuan;Li, Chuanchuan;Tan, Manqing - 通讯作者:
Tan, Manqing
Behavior of continuous steel-concrete composite beams with web openings
腹板开孔连续钢-混凝土组合梁的性能
- DOI:
10.1007/s13296-015-1218-2 - 发表时间:
2015-12 - 期刊:
- 影响因子:1.5
- 作者:
Li, Longqi;Liao, Wenyuan;Wang, Jun;Zhou, Donghua - 通讯作者:
Zhou, Donghua
Modeling of particle removal using non-contact brush scrubbing in post-CMP cleaning processes
- DOI:
10.1080/00218460600766566 - 发表时间:
2006-06-01 - 期刊:
- 影响因子:2.2
- 作者:
Chein, Reiyu;Liao, Wenyuan - 通讯作者:
Liao, Wenyuan
Liao, Wenyuan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Liao, Wenyuan', 18)}}的其他基金
Mathematical theory and computational methods for seismic full waveform inversion problems
地震全波形反演问题的数学理论与计算方法
- 批准号:
RGPIN-2019-04830 - 财政年份:2022
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
Mathematical theory and computational methods for seismic full waveform inversion problems
地震全波形反演问题的数学理论与计算方法
- 批准号:
RGPIN-2019-04830 - 财政年份:2021
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
Mathematical theory and computational methods for seismic full waveform inversion problems
地震全波形反演问题的数学理论与计算方法
- 批准号:
RGPIN-2019-04830 - 财政年份:2020
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
An integrated workflow for oil-bearing prediction using seismic information and well log data
使用地震信息和测井数据进行含油预测的集成工作流程
- 批准号:
532227-2018 - 财政年份:2020
- 资助金额:
$ 1.24万 - 项目类别:
Collaborative Research and Development Grants
An integrated workflow for oil-bearing prediction using seismic information and well log data
使用地震信息和测井数据进行含油预测的集成工作流程
- 批准号:
532227-2018 - 财政年份:2019
- 资助金额:
$ 1.24万 - 项目类别:
Collaborative Research and Development Grants
Adjoint state method and numerical algorithms for full waveform inversion of seismic data
地震数据全波形反演伴随状态法与数值算法
- 批准号:
RGPIN-2014-04913 - 财政年份:2018
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
Adjoint state method and numerical algorithms for full waveform inversion of seismic data
地震数据全波形反演伴随状态法和数值算法
- 批准号:
RGPIN-2014-04913 - 财政年份:2017
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
Adjoint state method and numerical algorithms for full waveform inversion of seismic data
地震数据全波形反演伴随状态法与数值算法
- 批准号:
RGPIN-2014-04913 - 财政年份:2016
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
Adjoint state method and numerical algorithms for full waveform inversion of seismic data
地震数据全波形反演伴随状态法和数值算法
- 批准号:
RGPIN-2014-04913 - 财政年份:2015
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
Development of a new fast Fourier transform algorithms for seismic data regularization
开发用于地震数据正则化的新型快速傅里叶变换算法
- 批准号:
468680-2014 - 财政年份:2014
- 资助金额:
$ 1.24万 - 项目类别:
Engage Plus Grants Program
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Fibered纽结的自同胚、Floer同调与4维亏格
- 批准号:12301086
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
基于密度泛函理论金原子簇放射性药物设计、制备及其在肺癌诊疗中的应用研究
- 批准号:82371997
- 批准年份:2023
- 资助金额:48.00 万元
- 项目类别:面上项目
基于isomorph theory研究尘埃等离子体物理量的微观动力学机制
- 批准号:12247163
- 批准年份:2022
- 资助金额:18.00 万元
- 项目类别:专项项目
Toward a general theory of intermittent aeolian and fluvial nonsuspended sediment transport
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:
英文专著《FRACTIONAL INTEGRALS AND DERIVATIVES: Theory and Applications》的翻译
- 批准号:12126512
- 批准年份:2021
- 资助金额:12.0 万元
- 项目类别:数学天元基金项目
钱江潮汐影响下越江盾构开挖面动态泥膜形成机理及压力控制技术研究
- 批准号:LY21E080004
- 批准年份:2020
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于Restriction-Centered Theory的自然语言模糊语义理论研究及应用
- 批准号:61671064
- 批准年份:2016
- 资助金额:65.0 万元
- 项目类别:面上项目
高阶微分方程的周期解及多重性
- 批准号:11501240
- 批准年份:2015
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
四维流形上的有限群作用与奇异光滑结构
- 批准号:11301334
- 批准年份:2013
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Mathematical theory and computational methods for seismic full waveform inversion problems
地震全波形反演问题的数学理论与计算方法
- 批准号:
RGPIN-2019-04830 - 财政年份:2022
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
Mathematical modeling of Mycobacterium tuberculosis dissemination
结核分枝杆菌传播的数学模型
- 批准号:
10364119 - 财政年份:2022
- 资助金额:
$ 1.24万 - 项目类别:
Theory and methods in mathematical and computational finance
数学和计算金融的理论和方法
- 批准号:
RGPIN-2021-04112 - 财政年份:2022
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
Mathematical modeling of Mycobacterium tuberculosis dissemination
结核分枝杆菌传播的数学模型
- 批准号:
10612718 - 财政年份:2022
- 资助金额:
$ 1.24万 - 项目类别:
Theory and methods in mathematical and computational finance
数学和计算金融的理论和方法
- 批准号:
RGPIN-2021-04112 - 财政年份:2021
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
Mathematical and computational modeling of suicidal thoughts and behaviors
自杀想法和行为的数学和计算模型
- 批准号:
10437592 - 财政年份:2021
- 资助金额:
$ 1.24万 - 项目类别:
Mathematical theory and computational methods for seismic full waveform inversion problems
地震全波形反演问题的数学理论与计算方法
- 批准号:
RGPIN-2019-04830 - 财政年份:2021
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
A Mathematical and Computational Theory of Linguistic Inference
语言推理的数学和计算理论
- 批准号:
517852-2018 - 财政年份:2021
- 资助金额:
$ 1.24万 - 项目类别:
Postgraduate Scholarships - Doctoral
A Mathematical and Computational Theory of Linguistic Inference
语言推理的数学和计算理论
- 批准号:
517852-2018 - 财政年份:2020
- 资助金额:
$ 1.24万 - 项目类别:
Postgraduate Scholarships - Doctoral
Mathematical theory and computational methods for seismic full waveform inversion problems
地震全波形反演问题的数学理论与计算方法
- 批准号:
RGPIN-2019-04830 - 财政年份:2020
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual