Algorithms in global fields, with applications
全球领域算法及应用
基本信息
- 批准号:RGPIN-2019-04844
- 负责人:
- 金额:$ 1.38万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2019
- 资助国家:加拿大
- 起止时间:2019-01-01 至 2020-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Number theory is a wide-ranging branch of mathematics dating back to the ancient Greeks that explores properties of numbers and the structures they form. Originally very much under the umbrella of pure abstract mathematics, aspects of the discipline have been transformed in recent decades due to the ever increasing power of computing technology. Number theory is one of the most active and well represented areas of mathematics in Canada, and the country is internationally recognized for its research and training excellence in this field. ******Number theory has been discovered to have many important connections to other areas both in and outside mathematics, including computer science, physics and engineering. It features in quantum phenomena and has uses in acoustics, modern satellite communication and cryptography, where it serves as the foundation for protecting digital information from hackers and other unauthorized parties in online banking and shopping, e-commerce, internet communication and many other applications. Data security has emerged as one of the foremost concerns in our society, and as information becomes increasingly accessible through the Internet, the need to secure and authenticate data and guard one's identity is more imperative than ever. The security of most modern methods for information protection relies on the supposed difficulty of some computational number theoretic problem. Specifically, these schemes are set up in such a manner that the only known way for an attacker to break the given system is to solve an instance of the underlying hard mathematical problem, which would require enormous computing power far beyond their means. ******My interest is in computationally difficult problems arising in important number theoretic structures referred to as global fields. A special case is given by the setting of elliptic curves which provide data protection in the Blackberry smartphone, Bluray players and other real world technologies. Investigating these problems and their computational hardness leads to a deeper understanding of the underlying number theoretic structures and their behaviours. It also offers new insights into their suitability for potential cryptographic applications, including novel future schemes that are resistant to attacks by quantum computers. My research takes a comprehensive approach comprised of exploration into mathematical foundations, algorithm design and analysis, high-performance computer programming, and scientific interpretation of the extensive data sets produced by our computer implementations. Tangible practical outcomes include a suite of efficient techniques for arithmetic in global fields and a collection of state-of-the-art algorithms for number theoretic and possibly cryptographic computations. Students trained under this research will gain valuable skills in problem solving, quantitative reasoning and computer programming, thus preparing them for meaningful productive future careers.**
数论是数学的一个广泛分支,其历史可以追溯到古希腊,它探索数字的属性及其形成的结构。最初很大程度上是在纯抽象数学的保护下,近几十年来,由于计算技术的不断增强,该学科的各个方面已经发生了变化。数论是加拿大最活跃、最具代表性的数学领域之一,该国因其在该领域的卓越研究和培训而受到国际认可。 ******人们发现数论与数学内外的其他领域有许多重要的联系,包括计算机科学、物理学和工程学。它以量子现象为特征,并在声学、现代卫星通信和密码学中得到应用,在网上银行和购物、电子商务、互联网通信和许多其他应用中,它是保护数字信息免受黑客和其他未经授权方侵害的基础。数据安全已成为我们社会最关心的问题之一,随着信息越来越多地通过互联网获取,保护和验证数据以及保护个人身份的需求比以往任何时候都更加迫切。大多数现代信息保护方法的安全性依赖于某些计算数论问题的假定难度。具体来说,这些方案的设置方式使得攻击者破坏给定系统的唯一已知方法是解决潜在的数学难题的实例,这将需要远远超出他们能力的巨大计算能力。 ******我的兴趣是在被称为全局域的重要数论结构中出现的计算难题。椭圆曲线的设置给出了一个特殊情况,它为黑莓智能手机、蓝光播放器和其他现实世界技术提供数据保护。研究这些问题及其计算难度可以使我们更深入地了解潜在的数论结构及其行为。它还提供了关于它们对潜在加密应用的适用性的新见解,包括抵抗量子计算机攻击的新颖的未来方案。我的研究采用综合方法,包括探索数学基础、算法设计和分析、高性能计算机编程以及对计算机实现产生的广泛数据集的科学解释。切实的实际成果包括一套用于全球领域算术的有效技术以及一系列用于数论和可能的密码计算的最先进算法。在这项研究中接受培训的学生将获得解决问题、定量推理和计算机编程方面的宝贵技能,从而为他们未来有意义的、富有成效的职业生涯做好准备。**
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Scheidler, Renate其他文献
Orienteering with One Endomorphism.
- DOI:
10.1007/s44007-023-00053-2 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Arpin, Sarah;Chen, Mingjie;Lauter, Kristin E;Scheidler, Renate;Stange, Katherine E;Tran, Ha T N - 通讯作者:
Tran, Ha T N
Divisor class group arithmetic on C3,4curves
C3,4 曲线上的除数类群算术
- DOI:
10.2140/obs.2020.4.317 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
MacNeil, Evan;Jacobson Jr., Michael J.;Scheidler, Renate - 通讯作者:
Scheidler, Renate
ANTS XIII: Proceedings of the Thirteenth Algorithmic Number Theory Symposium
ANTS XIII:第十三届算法数论研讨会论文集
- DOI:
10.2140/obs.2019.2-1 - 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Scheidler, Renate;Sorenson, Jonathan - 通讯作者:
Sorenson, Jonathan
Scheidler, Renate的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Scheidler, Renate', 18)}}的其他基金
Algorithms in global fields, with applications
全球领域算法及应用
- 批准号:
RGPIN-2019-04844 - 财政年份:2022
- 资助金额:
$ 1.38万 - 项目类别:
Discovery Grants Program - Individual
Algorithms in global fields, with applications
全球领域算法及应用
- 批准号:
RGPIN-2019-04844 - 财政年份:2021
- 资助金额:
$ 1.38万 - 项目类别:
Discovery Grants Program - Individual
Algorithms in global fields, with applications
全球领域算法及应用
- 批准号:
RGPIN-2019-04844 - 财政年份:2020
- 资助金额:
$ 1.38万 - 项目类别:
Discovery Grants Program - Individual
Algorithms and cryptography in global fields
全球领域的算法与密码学
- 批准号:
250246-2011 - 财政年份:2018
- 资助金额:
$ 1.38万 - 项目类别:
Discovery Grants Program - Individual
Algorithms and cryptography in global fields
全球领域的算法与密码学
- 批准号:
250246-2011 - 财政年份:2017
- 资助金额:
$ 1.38万 - 项目类别:
Discovery Grants Program - Individual
Algorithms and cryptography in global fields
全球领域的算法与密码学
- 批准号:
250246-2011 - 财政年份:2016
- 资助金额:
$ 1.38万 - 项目类别:
Discovery Grants Program - Individual
Algorithms and cryptography in global fields
全球领域的算法与密码学
- 批准号:
250246-2011 - 财政年份:2015
- 资助金额:
$ 1.38万 - 项目类别:
Discovery Grants Program - Individual
Algorithms and cryptography in global fields
全球领域的算法与密码学
- 批准号:
250246-2011 - 财政年份:2014
- 资助金额:
$ 1.38万 - 项目类别:
Discovery Grants Program - Individual
Algorithms and cryptography in global fields
全球领域的算法与密码学
- 批准号:
250246-2011 - 财政年份:2013
- 资助金额:
$ 1.38万 - 项目类别:
Discovery Grants Program - Individual
Algorithms and cryptography in global fields
全球领域的算法与密码学
- 批准号:
250246-2011 - 财政年份:2012
- 资助金额:
$ 1.38万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
Identification and quantification of primary phytoplankton functional types in the global oceans from hyperspectral ocean color remote sensing
- 批准号:
- 批准年份:2022
- 资助金额:160 万元
- 项目类别:
中大尺度原子、分子团簇电子和几何结构的理论研究
- 批准号:21073196
- 批准年份:2010
- 资助金额:36.0 万元
- 项目类别:面上项目
核子自旋结构与高能反应过程的自旋不对称
- 批准号:10975092
- 批准年份:2009
- 资助金额:40.0 万元
- 项目类别:面上项目
非线性抛物双曲耦合方程组及其吸引子
- 批准号:10571024
- 批准年份:2005
- 资助金额:23.0 万元
- 项目类别:面上项目
磁层亚暴触发过程的全球(global)MHD-Hall数值模拟
- 批准号:40536030
- 批准年份:2005
- 资助金额:120.0 万元
- 项目类别:重点项目
相似海外基金
Algorithms in global fields, with applications
全球领域算法及应用
- 批准号:
RGPIN-2019-04844 - 财政年份:2022
- 资助金额:
$ 1.38万 - 项目类别:
Discovery Grants Program - Individual
Algorithms in global fields, with applications
全球领域算法及应用
- 批准号:
RGPIN-2019-04844 - 财政年份:2021
- 资助金额:
$ 1.38万 - 项目类别:
Discovery Grants Program - Individual
Algorithms in global fields, with applications
全球领域算法及应用
- 批准号:
RGPIN-2019-04844 - 财政年份:2020
- 资助金额:
$ 1.38万 - 项目类别:
Discovery Grants Program - Individual
Algorithms and cryptography in global fields
全球领域的算法与密码学
- 批准号:
250246-2011 - 财政年份:2018
- 资助金额:
$ 1.38万 - 项目类别:
Discovery Grants Program - Individual
Algorithms and cryptography in global fields
全球领域的算法与密码学
- 批准号:
250246-2011 - 财政年份:2017
- 资助金额:
$ 1.38万 - 项目类别:
Discovery Grants Program - Individual
Algorithms and cryptography in global fields
全球领域的算法与密码学
- 批准号:
250246-2011 - 财政年份:2016
- 资助金额:
$ 1.38万 - 项目类别:
Discovery Grants Program - Individual
Algorithms and cryptography in global fields
全球领域的算法与密码学
- 批准号:
250246-2011 - 财政年份:2015
- 资助金额:
$ 1.38万 - 项目类别:
Discovery Grants Program - Individual
Algorithms and cryptography in global fields
全球领域的算法与密码学
- 批准号:
250246-2011 - 财政年份:2014
- 资助金额:
$ 1.38万 - 项目类别:
Discovery Grants Program - Individual
Algorithms and cryptography in global fields
全球领域的算法与密码学
- 批准号:
250246-2011 - 财政年份:2013
- 资助金额:
$ 1.38万 - 项目类别:
Discovery Grants Program - Individual
Algorithms and cryptography in global fields
全球领域的算法与密码学
- 批准号:
250246-2011 - 财政年份:2012
- 资助金额:
$ 1.38万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




