Building scalable and real-time deep learning classification of encrypted network traffic
构建加密网络流量的可扩展且实时的深度学习分类
基本信息
- 批准号:543552-2019
- 负责人:
- 金额:$ 1.38万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Engage Grants Program
- 财政年份:2019
- 资助国家:加拿大
- 起止时间:2019-01-01 至 2020-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
With increasing use of cybersecurity-based solutions, most data transmitted over networks is secured either by encryption or similar techniques. While this is essential for security and the protection of data, network traffic classification remains challenging. This is further convoluted when large-scale data is generated at high speed. This requires classification of encrypted network traffic data that is capable of (1) obviating deep packet or content inspection, and (2) maintaining high accuracy on big data produced at high speed, both of which will be addressed by the proposed project. Deep learning is part of machine learning that focuses on learning data representations and is inspired by the structures and functions of the human brain known as artificial neural networks. We will lay the foundation of a framework that will be based on machine learning and deep learning to perform efficient classification of encrypted network traffic data. The outcomes from this research will be used by the industry partner as potential enhancements and extensions to their current products and for developing new products.
随着越来越多地使用基于网络安全的解决方案,通过网络传输的大多数数据都通过加密或类似技术进行保护。虽然这对数据的安全和保护至关重要,但网络流量分类仍然具有挑战性。当高速生成大规模数据时,这一点更加复杂。这需要对加密的网络流量数据进行分类,该分类能够(1)避免深度分组或内容检查,以及(2)对高速产生的大数据保持高精度,这两个问题都将由拟议的项目解决。深度学习是机器学习的一部分,专注于学习数据表示法,灵感来自于被称为人工神经网络的人脑的结构和功能。我们将为基于机器学习和深度学习的框架奠定基础,以执行加密网络流量数据的有效分类。这项研究的结果将被行业合作伙伴用作其现有产品的潜在增强和扩展,并用于开发新产品。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shafiq, MuhammadOmair其他文献
Shafiq, MuhammadOmair的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Shafiq, MuhammadOmair', 18)}}的其他基金
Execution Modeling and Analytics for Large-scale and Data-intensive Software Applications
大规模数据密集型软件应用程序的执行建模和分析
- 批准号:
RGPIN-2018-06312 - 财政年份:2022
- 资助金额:
$ 1.38万 - 项目类别:
Discovery Grants Program - Individual
Execution Modeling and Analytics for Large-scale and Data-intensive Software Applications
大规模数据密集型软件应用程序的执行建模和分析
- 批准号:
RGPIN-2018-06312 - 财政年份:2021
- 资助金额:
$ 1.38万 - 项目类别:
Discovery Grants Program - Individual
Execution Modeling and Analytics for Large-scale and Data-intensive Software Applications
大规模数据密集型软件应用程序的执行建模和分析
- 批准号:
RGPIN-2018-06312 - 财政年份:2020
- 资助金额:
$ 1.38万 - 项目类别:
Discovery Grants Program - Individual
Execution Modeling and Analytics for Large-scale and Data-intensive Software Applications
大规模数据密集型软件应用程序的执行建模和分析
- 批准号:
RGPIN-2018-06312 - 财政年份:2019
- 资助金额:
$ 1.38万 - 项目类别:
Discovery Grants Program - Individual
Execution Modeling and Analytics for Large-scale and Data-intensive Software Applications
大规模数据密集型软件应用程序的执行建模和分析
- 批准号:
DGECR-2018-00043 - 财政年份:2018
- 资助金额:
$ 1.38万 - 项目类别:
Discovery Launch Supplement
Execution Modeling and Analytics for Large-scale and Data-intensive Software Applications
大规模数据密集型软件应用程序的执行建模和分析
- 批准号:
RGPIN-2018-06312 - 财政年份:2018
- 资助金额:
$ 1.38万 - 项目类别:
Discovery Grants Program - Individual
Semantically Formalized Logging for Enhanced Management and Monitoring of Large Scale Applications
语义形式化日志记录,用于增强大规模应用程序的管理和监控
- 批准号:
424746-2012 - 财政年份:2014
- 资助金额:
$ 1.38万 - 项目类别:
Vanier Canada Graduate Scholarships - Doctoral
Semantically Formalized Logging for Enhanced Management and Monitoring of Large Scale Applications
语义形式化日志记录,用于增强大规模应用程序的管理和监控
- 批准号:
424746-2012 - 财政年份:2013
- 资助金额:
$ 1.38万 - 项目类别:
Vanier Canada Graduate Scholarships - Doctoral
Semantically Formalized Logging for Enhanced Management and Monitoring of Large Scale Applications
语义形式化日志记录,用于增强大规模应用程序的管理和监控
- 批准号:
424746-2012 - 财政年份:2012
- 资助金额:
$ 1.38万 - 项目类别:
Vanier Canada Graduate Scholarships - Doctoral
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
相似海外基金
CAREER: Foundations of Scalable and Resilient Distributed Real-Time Decision Making in Open Multi-Agent Systems
职业:开放多代理系统中可扩展和弹性分布式实时决策的基础
- 批准号:
2339509 - 财政年份:2024
- 资助金额:
$ 1.38万 - 项目类别:
Continuing Grant
Real time risk prognostication via scalable hazard trees and forests
通过可扩展的危险树和森林进行实时风险预测
- 批准号:
10655749 - 财政年份:2023
- 资助金额:
$ 1.38万 - 项目类别:
AMPS: Scalable Methods for Real-time Estimation of Power Systems under Uncertainty
AMPS:不确定性下电力系统实时估计的可扩展方法
- 批准号:
2229495 - 财政年份:2023
- 资助金额:
$ 1.38万 - 项目类别:
Standard Grant
SPIRIT - Scalable Platform for Innovations on Real-time Immersive Telepresence
SPIRIT - 可扩展的实时沉浸式网真创新平台
- 批准号:
10039387 - 财政年份:2022
- 资助金额:
$ 1.38万 - 项目类别:
EU-Funded
CNS Core: Small: Enabling Real-time, Scalable and Secure Collaborative Intelligence on the Edge
CNS 核心:小型:在边缘实现实时、可扩展且安全的协作智能
- 批准号:
2140346 - 财政年份:2022
- 资助金额:
$ 1.38万 - 项目类别:
Standard Grant
Scalable Reinforcement Learning Methods for Learning in Real-Time with Robots
用于机器人实时学习的可扩展强化学习方法
- 批准号:
RGPIN-2021-02690 - 财政年份:2022
- 资助金额:
$ 1.38万 - 项目类别:
Discovery Grants Program - Individual
SPIRIT - Scalable Platform for Innovations on Real-time Immersive Telepresence
SPIRIT - 可扩展的实时沉浸式网真创新平台
- 批准号:
10043737 - 财政年份:2022
- 资助金额:
$ 1.38万 - 项目类别:
EU-Funded
CAREER: Scalable Remote Sensing Computational Framework for Near-real-time Crop Characterization
职业:用于近实时作物表征的可扩展遥感计算框架
- 批准号:
2048068 - 财政年份:2021
- 资助金额:
$ 1.38万 - 项目类别:
Continuing Grant
Novel scalable dynamic packaging technology for flight-free travel with real-time data feeds
新颖的可扩展动态包装技术,通过实时数据馈送实现免飞行旅行
- 批准号:
10000035 - 财政年份:2021
- 资助金额:
$ 1.38万 - 项目类别:
Collaborative R&D
Collaborative Research: Framework: Data: NSCI: HDR: GeoSCIFramework: Scalable Real-Time Streaming Analytics and Machine Learning for Geoscience and Hazards Research
协作研究:框架:数据:NSCI:HDR:GeoSCIFramework:用于地球科学和灾害研究的可扩展实时流分析和机器学习
- 批准号:
2219975 - 财政年份:2021
- 资助金额:
$ 1.38万 - 项目类别:
Standard Grant














{{item.name}}会员




