Ordered groups and 3-manifolds

有序群和 3 流形

基本信息

  • 批准号:
    RGPIN-2014-05465
  • 负责人:
  • 金额:
    $ 1.38万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2019
  • 资助国家:
    加拿大
  • 起止时间:
    2019-01-01 至 2020-12-31
  • 项目状态:
    已结题

项目摘要

My proposed research deals with the interplay between two fields of mathematics known as group theory and the topology of three-dimensional manifolds. Three-dimensional manifolds are spaces that model many phenomena that occur naturally in mathematics, but also phenomena in nature, such as the possible shapes of the universe. Group theory is a type of algebra that, in its early days, dealt primarily with the properties of symmetry and rigid motions of shapes, and so in its modern form this algebraic theory is well-adapted to studying the shapes of three-dimensional spaces. The goal at hand is to use group theory to better understand the possible shapes and topologies of three-dimensional manifolds. **One of the common modern techniques is to take a three-dimensional manifold, and from it, calculate what is called its `fundamental group', an algebraic object that carries with it an incredible amount of data about the symmetries, shape and structure of the manifold you started with. Having computed the fundamental group of a manifold, the challenge is to extract all the available information from the output of your calculation, a problem which has many different approaches and has been an ongoing topic of research for decades. My research program will focus on trying a new technique of investigating the information carried by the fundamental group of a three dimensional manifold, by ordering the elements of the fundamental group (an algebraic exercise) and seeing what properties of the manifolds (a topological question) are reflected by the orderings.**This line of research is particularly interesting at present, because while the idea of ordering groups has been around for years, the idea of ordering fundamental groups is new and is producing surprising results. The outputs of the calculations are seeming to indicate that this new approach may be connected to a powerful theory called Heegaard-Floer homology, and a related area of study known as foliation theory, although for the time being there is no known reason why such connections should exist. Developments linking these three fields will allow for a fruitful transfer of ideas, problem-solving techniques and theorems from one area to another, as has already been the case in some of the simpler situations where the connection is understood.
我提出的研究涉及两个数学领域之间的相互作用,即群论和三维流形的拓扑学。三维流形是对数学中自然发生的许多现象进行建模的空间,也是自然界中的现象,例如宇宙的可能形状。群论是一种代数,在它的早期,主要研究形状的对称性和刚性运动的性质,所以在它的现代形式中,这个代数理论很适合于研究三维空间的形状。手头的目标是使用群论来更好地理解三维流形的可能形状和拓扑。**最常见的现代技术之一是取一个三维流形,并从它计算出所谓的‘基本群’,一个代数对象,它携带着关于你一开始所用流形的对称性、形状和结构的惊人数量的数据。在计算了流形的基本群之后,挑战是从计算的输出中提取所有可用的信息,这个问题有许多不同的方法,几十年来一直是一个持续研究的主题。我的研究计划将集中于尝试一种新的技术来研究三维流形的基本群所承载的信息,方法是对基本群的元素进行排序(一种代数练习),并查看排序反映了流形的哪些性质(一个拓扑问题)。**这一研究目前特别有趣,因为尽管对群进行排序的想法已经存在多年,但对基本群进行排序的想法是新的,正在产生令人惊讶的结果。计算的结果似乎表明,这种新的方法可能与一种名为Heegaard-Floer同调的强大理论和一个相关的研究领域--叶化理论--有关,尽管目前还没有已知的原因说明这种联系为什么会存在。将这三个领域联系起来的发展将使思想、解决问题的技术和理论能够从一个领域卓有成效地转移到另一个领域,就像在一些更简单的情况下已经理解的那样。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Clay, Adam其他文献

Clay, Adam的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Clay, Adam', 18)}}的其他基金

Low dimensional topology, ordered groups and actions on 1-manifolds
低维拓扑、有序群和 1-流形上的动作
  • 批准号:
    RGPIN-2020-05343
  • 财政年份:
    2022
  • 资助金额:
    $ 1.38万
  • 项目类别:
    Discovery Grants Program - Individual
Low dimensional topology, ordered groups and actions on 1-manifolds
低维拓扑、有序群和 1-流形上的动作
  • 批准号:
    RGPIN-2020-05343
  • 财政年份:
    2021
  • 资助金额:
    $ 1.38万
  • 项目类别:
    Discovery Grants Program - Individual
Low dimensional topology, ordered groups and actions on 1-manifolds
低维拓扑、有序群和 1-流形上的动作
  • 批准号:
    RGPIN-2020-05343
  • 财政年份:
    2020
  • 资助金额:
    $ 1.38万
  • 项目类别:
    Discovery Grants Program - Individual
Ordered groups and 3-manifolds
有序群和 3 流形
  • 批准号:
    RGPIN-2014-05465
  • 财政年份:
    2018
  • 资助金额:
    $ 1.38万
  • 项目类别:
    Discovery Grants Program - Individual
Ordered groups and 3-manifolds
有序群和 3 流形
  • 批准号:
    RGPIN-2014-05465
  • 财政年份:
    2017
  • 资助金额:
    $ 1.38万
  • 项目类别:
    Discovery Grants Program - Individual
Ordered groups and 3-manifolds
有序群和 3 流形
  • 批准号:
    RGPIN-2014-05465
  • 财政年份:
    2016
  • 资助金额:
    $ 1.38万
  • 项目类别:
    Discovery Grants Program - Individual
Ordered groups and 3-manifolds
有序群和 3 流形
  • 批准号:
    RGPIN-2014-05465
  • 财政年份:
    2015
  • 资助金额:
    $ 1.38万
  • 项目类别:
    Discovery Grants Program - Individual
Ordered groups and 3-manifolds
有序群和 3 流形
  • 批准号:
    RGPIN-2014-05465
  • 财政年份:
    2014
  • 资助金额:
    $ 1.38万
  • 项目类别:
    Discovery Grants Program - Individual
Orderable groups and their applications
可排序组及其应用
  • 批准号:
    388022-2010
  • 财政年份:
    2011
  • 资助金额:
    $ 1.38万
  • 项目类别:
    Postdoctoral Fellowships
Orderable groups and their applications
可排序组及其应用
  • 批准号:
    388022-2010
  • 财政年份:
    2010
  • 资助金额:
    $ 1.38万
  • 项目类别:
    Postdoctoral Fellowships

相似海外基金

Diffusions and jump processes on groups and manifolds
群和流形上的扩散和跳跃过程
  • 批准号:
    2343868
  • 财政年份:
    2024
  • 资助金额:
    $ 1.38万
  • 项目类别:
    Continuing Grant
Smooth 4-manifolds, hyperbolic 3-manifolds and diffeomorphism groups
光滑 4 流形、双曲 3 流形和微分同胚群
  • 批准号:
    2304841
  • 财政年份:
    2023
  • 资助金额:
    $ 1.38万
  • 项目类别:
    Continuing Grant
Conference: Geometry and Analysis of Groups and Manifolds
会议:群和流形的几何与分析
  • 批准号:
    2247784
  • 财政年份:
    2023
  • 资助金额:
    $ 1.38万
  • 项目类别:
    Standard Grant
Topology of Kaehler Manifolds, Surface Bundles, and Outer Automorphism Groups
凯勒流形、表面丛和外自同构群的拓扑
  • 批准号:
    2401403
  • 财政年份:
    2023
  • 资助金额:
    $ 1.38万
  • 项目类别:
    Standard Grant
Conference: Low-Dimensional Manifolds, their Geometry and Topology, Representations and Actions of their Fundamental Groups and Connections with Physics
会议:低维流形、其几何和拓扑、其基本群的表示和作用以及与物理学的联系
  • 批准号:
    2247008
  • 财政年份:
    2023
  • 资助金额:
    $ 1.38万
  • 项目类别:
    Standard Grant
Low dimensional topology, ordered groups and actions on 1-manifolds
低维拓扑、有序群和 1-流形上的动作
  • 批准号:
    RGPIN-2020-05343
  • 财政年份:
    2022
  • 资助金额:
    $ 1.38万
  • 项目类别:
    Discovery Grants Program - Individual
Schottky Groups and the construction of higher genus Frobenius manifolds
肖特基群和更高属的弗罗贝尼乌斯流形的构造
  • 批准号:
    2750785
  • 财政年份:
    2022
  • 资助金额:
    $ 1.38万
  • 项目类别:
    Studentship
Homological Growth of Groups and Aspherical Manifolds
群和非球面流形的同调生长
  • 批准号:
    2203325
  • 财政年份:
    2022
  • 资助金额:
    $ 1.38万
  • 项目类别:
    Standard Grant
Topology and Geometry from 3-Manifolds to Free Groups
从三流形到自由群的拓扑和几何
  • 批准号:
    2102018
  • 财政年份:
    2021
  • 资助金额:
    $ 1.38万
  • 项目类别:
    Continuing Grant
Low dimensional topology, ordered groups and actions on 1-manifolds
低维拓扑、有序群和 1-流形上的动作
  • 批准号:
    RGPIN-2020-05343
  • 财政年份:
    2021
  • 资助金额:
    $ 1.38万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了