Computationally Intensive Methods for Large Spatio-Temporal Data Sets

大型时空数据集的计算密集型方法

基本信息

  • 批准号:
    RGPIN-2018-04604
  • 负责人:
  • 金额:
    $ 1.46万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2019
  • 资助国家:
    加拿大
  • 起止时间:
    2019-01-01 至 2020-12-31
  • 项目状态:
    已结题

项目摘要

***The proposed research concerns data that has been aggregated to fall within a spatial region, an interval of time or both. Such data is increasingly common in large environmental or epidemiological studies. For example, in the instance of a rare disease exploring the spatial structure of disease incidence requires collecting cases over a long period of time often decades. The data usually comes in the form of case counts for subdivisions of a geographic region postal codes or census enumeration areas. If the data is collected periodically, say every five years as in the case of a census, then the data is aggregated in both space and time. One goal of an epidemiological study is to explore the structure of an intensity surface for disease incidence over a geographic region. The objective is to identify any structure that would indicate a higher than expected incidence of disease. Such a “hotspot” may itself be due to an environmental source (e.g. arsenic in ground water affecting the incidence of kidney cancer) or worsening/improving industrial conditions (e.g. the disuse of asbestos on the incidence of mesothelioma). Such aggregated spatio-temporal data has the added complexity that the boundaries of geographic regions can themselves change over time. The result is that over the period of entire study we can't say what the case count is for any subdivision within the study. In addition, the data itself may be mismeasured if, for example, an individuals residential history within the study region varies over time.******The research proposed considers the development of statistical algorithms for the analysis of such messy incomplete data. This includes broadening an existing class of local-EM algorithms to a set of EMS algorithms where the S-step is no longer simply dictated by the choice of kernel in the local likelihood but may now depend on how we model the correlation structure within a hierarchical Bayesian model. Computational efficiency is gained through Gauss Markov random field approximations and sparse matrix computations. Methods rely on modeling the data as a novel root Gaussian Cox process broadening the choice of the square root link function will allow integrated nested Laplace approximations to be extended to aggregated data. All methods proposed will allow for the analysis of data that is known to be mismeasured.**
* 拟议的研究涉及的数据已汇总到一个空间区域,一个时间间隔或两者兼而有之。此类数据在大型环境或流行病学研究中越来越常见。例如,在一种罕见疾病的情况下,探索疾病发病率的空间结构需要收集很长一段时间(通常是几十年)的病例。这些数据通常以地理区域、邮政编码或人口普查查点区域的病例数的形式出现。如果数据是定期收集的,比如像人口普查那样每五年收集一次,那么数据在空间和时间上都是汇总的。流行病学研究的一个目标是探索一个地理区域内疾病发病率的强度曲面的结构。其目的是确定任何结构,将表明高于预期的发病率。这种“热点”本身可能是由于环境来源(例如地下水中的砷影响肾癌的发病率)或工业条件的恶化/改善(例如停用石棉影响间皮瘤的发病率)。这种汇总的时空数据增加了复杂性,因为地理区域的边界本身可能随时间而变化。结果是,在整个研究期间,我们不能说研究中任何细分的病例数是多少。此外,数据本身可能会被错误测量,例如,如果一个人在研究区域内的居住历史随着时间的推移而变化。提出的研究认为,这种凌乱的不完整的数据分析的统计算法的发展。这包括将现有的一类局部EM算法扩展到一组EMS算法,其中S步骤不再简单地由局部似然中的内核选择决定,而是现在可能取决于我们如何在分层贝叶斯模型内对相关结构进行建模。通过高斯马尔可夫随机场近似和稀疏矩阵计算获得计算效率。方法依赖于将数据建模为新型根高斯考克斯过程,拓宽了平方根链接函数的选择,将允许将集成的嵌套拉普拉斯近似扩展到聚合数据。所有提议的方法都将允许对已知被错误计量的数据进行分析。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Stafford, James其他文献

Virtual Footprints Can Improve Walking Performance in People With Parkinson's Disease
  • DOI:
    10.3389/fneur.2018.00681
  • 发表时间:
    2018-08-17
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Gomez-Jordana, Luis, I;Stafford, James;Craig, Cathy M.
  • 通讯作者:
    Craig, Cathy M.
Evaluation of two commercially available pressure chambers to induce triploidy in saugeyes
  • DOI:
    10.1577/a05-095.1
  • 发表时间:
    2007-04-01
  • 期刊:
  • 影响因子:
    1
  • 作者:
    Abiado, Mary Ann G.;Penn, Michael;Stafford, James
  • 通讯作者:
    Stafford, James
Unravelling the Role of PARP1 in Homeostasis and Tumorigenesis: Implications for Anti-Cancer Therapies and Overcoming Resistance.
  • DOI:
    10.3390/cells12141904
  • 发表时间:
    2023-07-21
  • 期刊:
  • 影响因子:
    6
  • 作者:
    Lovsund, Taylor;Mashayekhi, Fatemeh;Fitieh, Amira;Stafford, James;Ismail, Ismail Hassan
  • 通讯作者:
    Ismail, Ismail Hassan
The performance of two data-generation processes for data with specified marginal treatment odds ratios

Stafford, James的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Stafford, James', 18)}}的其他基金

Computationally Intensive Methods for Large Spatio-Temporal Data Sets
大型时空数据集的计算密集型方法
  • 批准号:
    RGPIN-2018-04604
  • 财政年份:
    2022
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Understanding fish immune receptor-mediated control of the phagocytic process
了解鱼类免疫受体介导的吞噬过程控制
  • 批准号:
    RGPIN-2017-05442
  • 财政年份:
    2021
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Computationally Intensive Methods for Large Spatio-Temporal Data Sets
大型时空数据集的计算密集型方法
  • 批准号:
    RGPIN-2018-04604
  • 财政年份:
    2021
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Understanding fish immune receptor-mediated control of the phagocytic process
了解鱼类免疫受体介导的吞噬过程控制
  • 批准号:
    RGPIN-2017-05442
  • 财政年份:
    2020
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Computationally Intensive Methods for Large Spatio-Temporal Data Sets
大型时空数据集的计算密集型方法
  • 批准号:
    RGPIN-2018-04604
  • 财政年份:
    2020
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Understanding fish immune receptor-mediated control of the phagocytic process
了解鱼类免疫受体介导的吞噬过程控制
  • 批准号:
    RGPIN-2017-05442
  • 财政年份:
    2019
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Understanding fish immune receptor-mediated control of the phagocytic process
了解鱼类免疫受体介导的吞噬过程控制
  • 批准号:
    RGPIN-2017-05442
  • 财政年份:
    2018
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Computationally Intensive Methods for Large Spatio-Temporal Data Sets
大型时空数据集的计算密集型方法
  • 批准号:
    RGPIN-2018-04604
  • 财政年份:
    2018
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Understanding fish immune receptor-mediated control of the phagocytic process
了解鱼类免疫受体介导的吞噬过程控制
  • 批准号:
    RGPIN-2017-05442
  • 财政年份:
    2017
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Characterization of stimulatory and inhibitory immunoregulatory receptors in bony fish
硬骨鱼刺激性和抑制性免疫调节受体的表征
  • 批准号:
    341209-2012
  • 财政年份:
    2016
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual

相似海外基金

Computationally Intensive Methods for Large Spatio-Temporal Data Sets
大型时空数据集的计算密集型方法
  • 批准号:
    RGPIN-2018-04604
  • 财政年份:
    2022
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Approximations of computationally intensive statistical learning algorithms: theory and methods
计算密集型统计学习算法的近似:理论和方法
  • 批准号:
    RGPIN-2019-06487
  • 财政年份:
    2022
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Computationally Intensive Methods for Large Spatio-Temporal Data Sets
大型时空数据集的计算密集型方法
  • 批准号:
    RGPIN-2018-04604
  • 财政年份:
    2021
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Approximations of computationally intensive statistical learning algorithms: theory and methods
计算密集型统计学习算法的近似:理论和方法
  • 批准号:
    RGPIN-2019-06487
  • 财政年份:
    2021
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Computationally Intensive Methods for Large Spatio-Temporal Data Sets
大型时空数据集的计算密集型方法
  • 批准号:
    RGPIN-2018-04604
  • 财政年份:
    2020
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Approximations of computationally intensive statistical learning algorithms: theory and methods
计算密集型统计学习算法的近似:理论和方法
  • 批准号:
    RGPIN-2019-06487
  • 财政年份:
    2020
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Approximations of computationally intensive statistical learning algorithms: theory and methods
计算密集型统计学习算法的近似:理论和方法
  • 批准号:
    DGECR-2019-00269
  • 财政年份:
    2019
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Launch Supplement
Approximations of computationally intensive statistical learning algorithms: theory and methods
计算密集型统计学习算法的近似:理论和方法
  • 批准号:
    RGPIN-2019-06487
  • 财政年份:
    2019
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Computationally Intensive Methods for Large Spatio-Temporal Data Sets
大型时空数据集的计算密集型方法
  • 批准号:
    RGPIN-2018-04604
  • 财政年份:
    2018
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Sequential Monte Carlo Methods for Computationally Intensive Problems
用于计算密集型问题的顺序蒙特卡罗方法
  • 批准号:
    0503981
  • 财政年份:
    2005
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了