Functional Differential Equations in Biology and Epidemiology
生物学和流行病学中的泛函微分方程
基本信息
- 批准号:RGPIN-2017-04257
- 负责人:
- 金额:$ 1.46万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2019
- 资助国家:加拿大
- 起止时间:2019-01-01 至 2020-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
A distinguishing feature of the functional differential equations (FDEs) is that the evolution rate of the process described by such equations depends on the past history. During the past three decades, study on the theory and application of FDEs has been very active, the FDE related mathematical models are applicable to phenomena of different natures, such as, in biology, ecology, epidemiology, engineering and economy.******The long-term goals of the research include, understanding in-depth the dynamical behavior and the reasons that govern such behavior in biological and epidemiological systems that can be illustrated by FDEs, especially how time delay and the system structure affect the evolution of the species, whether the infectious disease can spread and persist, or lead to an infectious disease outbreak. Mathematical techniques based on nonlinear analysis, FDEs and dynamical systems including existence, non-existence, stability of certain type of periodic/quasi-periodic solutions, persistence, bifurcations will be mainly approached.******More realistic models may relate to the variation of environment which result in non-autonomous systems. In the literature, although some work has been done for autonomous and non-autonomous FDEs, there is a lack of theoretical analysis, especially for the stability and bifurcations. In the proposed research I will seek to extend and develop the stability and bifurcation theories to non-monotonic autonomous, non-autonomous, spatial and temporal involved FDEs with delays . And I will apply the theoretical results to tackle problems of qualitative analysis of dynamical behaviors arising in biological and epidemiological systems with stage/age-structures, or even disease transmission network models, with particular emphasis on establishing strong links on the effect of time delay, system construction and the dynamical behavior. I am also flexible enough to explore promising avenues of research as they emerge.******This proposed research will increase our knowledge of the qualitative properties in applied FDEs, from mathematical and biological/epidemiological points of view. The theories and methodologies developed in the proposal will have very high impact on the development in the nonlinear dynamics community. They will not only strengthen the foundation for theoretical expansion in a large class of FDEs, but will also provide a practical view to support biological and epidemiological decision making. The interdisciplinary collaboration and the application to the fishery will have great potential to provide novel insights to strength marine population dynamics, optimize harvesting rates, and maintain ecosystem structure. The anticipated outcomes are likely to have impact by leading to advancements in the field of applied dynamics and will enhance HQP training and collaboration benefiting in Canada.
泛函微分方程(FDES)的一个显着特点是,这种方程所描述的过程的演化速率依赖于过去的历史。在过去的三十年里,关于FDE的理论和应用的研究非常活跃,FDE相关的数学模型适用于不同性质的现象,如生物学,生态学,流行病学,工程和经济。该研究的长期目标包括深入了解可以通过FDE说明的生物和流行病学系统中的动力学行为和控制这种行为的原因,特别是时滞和系统结构如何影响物种的进化,传染病是否可以传播和持续,或导致传染病爆发。基于非线性分析,FDES和动力系统的数学技术,包括存在性,不存在性,某些类型的周期/拟周期解的稳定性,持久性,分叉将主要探讨。更现实的模型可能涉及到环境的变化,导致非自治系统。在文献中,虽然已经对自治和非自治的FDE做了一些工作,但缺乏理论分析,特别是对稳定性和分支的分析。在拟议的研究中,我将寻求扩展和发展的稳定性和分支理论的非单调自治,非自治,空间和时间涉及时滞的FDE。我将应用这些理论结果来解决具有阶段/年龄结构的生物和流行病学系统,甚至疾病传播网络模型中出现的动力学行为的定性分析问题,特别强调建立时滞,系统结构和动力学行为的影响之间的强联系。我也足够灵活,可以在出现有希望的研究途径时探索它们。这项拟议的研究将增加我们的知识,在应用FDES的定性性质,从数学和生物/流行病学的角度来看。该提案中提出的理论和方法将对非线性动力学社区的发展产生非常高的影响。它们不仅将加强在一个大类的FDES的理论扩展的基础,但也将提供一个实用的观点,以支持生物学和流行病学的决策。跨学科的合作和渔业的应用将有很大的潜力提供新的见解,以加强海洋种群动态,优化捕捞率,并保持生态系统结构。预期的结果可能会产生影响,导致应用动力学领域的进步,并将加强HQP培训和合作,使加拿大受益。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yuan, Yuan其他文献
Regional Social Inequalities and Social Deprivation in Guangdong Province, China
中国广东省的区域社会不平等和社会剥夺
- DOI:
10.1111/grow.12005 - 发表时间:
2013-03 - 期刊:
- 影响因子:3.2
- 作者:
Yuan, Yuan;Wu, Fulong - 通讯作者:
Wu, Fulong
Using arterial phase hyperenhancement on CT instead of gadoxetic acid arterial phase enhancement may improve the diagnostic performance for hepatocellular carcinoma.
- DOI:
10.21037/atm-22-4968 - 发表时间:
2022-11 - 期刊:
- 影响因子:0
- 作者:
Tang, Hehan;Gao, Feifei;Wei, Yi;Deng, Liping;Li, Qian;Yuan, Yuan;Zhang, Tong;Chen, Guoyong;Yao, Shan;Wei, Xiaocheng;Nie, Lisha;Song, Bin;Li, Zhenlin - 通讯作者:
Li, Zhenlin
The Practice and Application of AR Games to Assist Children's English Pronunciation Teaching.
- DOI:
10.1155/2022/3966740 - 发表时间:
2022 - 期刊:
- 影响因子:1.5
- 作者:
Hu, Liang;Yuan, Yuan;Chen, Qing;Kang, Xiangying;Zhu, Yan - 通讯作者:
Zhu, Yan
Cardioprotective effects of tanshinone IIA pretreatment via kinin B2 receptor-Akt-GSK-3beta dependent pathway in experimental diabetic cardiomyopathy.
丹参酮 IIA 预处理通过激肽 B2 受体 -Akt-GSK-3β 依赖性途径对实验性糖尿病心肌病的心脏保护作用。
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:9.3
- 作者:
Cao, Feng;Shen, Min;Li, Jiayi;Li, Weijie;Zhang, Yingmei;Zhao, Li;Zhang, Zheng;Yuan, Yuan;Wang, Haichang - 通讯作者:
Wang, Haichang
lncRNA NUTM2A-AS1 Targets the SRSF1/Trim37 Signaling Pathway to Promote the Proliferation and Invasion of Breast Cancer.
- DOI:
10.1155/2022/3299336 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Ning, Xiaojie;Zhao, Jianguo;He, Fan;Yuan, Yuan;Li, Bin;Ruan, Jian - 通讯作者:
Ruan, Jian
Yuan, Yuan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yuan, Yuan', 18)}}的其他基金
Functional Differential Equations in Biology and Epidemiology
生物学和流行病学中的泛函微分方程
- 批准号:
RGPIN-2017-04257 - 财政年份:2022
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Functional Differential Equations in Biology and Epidemiology
生物学和流行病学中的泛函微分方程
- 批准号:
RGPIN-2017-04257 - 财政年份:2021
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Functional Differential Equations in Biology and Epidemiology
生物学和流行病学中的泛函微分方程
- 批准号:
RGPIN-2017-04257 - 财政年份:2020
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Functional Differential Equations in Biology and Epidemiology
生物学和流行病学中的泛函微分方程
- 批准号:
RGPIN-2017-04257 - 财政年份:2018
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Functional Differential Equations in Biology and Epidemiology
生物学和流行病学中的泛函微分方程
- 批准号:
RGPIN-2017-04257 - 财政年份:2017
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Qualitative Analysis and Applications for Dynamical Systems with Time Delay
时滞动力系统的定性分析及应用
- 批准号:
261357-2012 - 财政年份:2016
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Qualitative Analysis and Applications for Dynamical Systems with Time Delay
时滞动力系统的定性分析及应用
- 批准号:
261357-2012 - 财政年份:2015
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Qualitative Analysis and Applications for Dynamical Systems with Time Delay
时滞动力系统的定性分析及应用
- 批准号:
261357-2012 - 财政年份:2014
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Qualitative Analysis and Applications for Dynamical Systems with Time Delay
时滞动力系统的定性分析及应用
- 批准号:
261357-2012 - 财政年份:2013
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Qualitative Analysis and Applications for Dynamical Systems with Time Delay
时滞动力系统的定性分析及应用
- 批准号:
261357-2012 - 财政年份:2012
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
相似海外基金
Functional Differential Equations in Biology and Epidemiology
生物学和流行病学中的泛函微分方程
- 批准号:
RGPIN-2017-04257 - 财政年份:2022
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Functional Differential Equations in Biology and Epidemiology
生物学和流行病学中的泛函微分方程
- 批准号:
RGPIN-2017-04257 - 财政年份:2021
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Bifurcations: functional differential equations and waves in inhomogeneous media
分岔:非均匀介质中的泛函微分方程和波
- 批准号:
RGPIN-2016-04318 - 财政年份:2021
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Dynamics of Functional Differential Equations with Applications in Epidemiology
泛函微分方程动力学及其在流行病学中的应用
- 批准号:
RGPIN-2016-06134 - 财政年份:2021
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Functional Analysis and Partial Differential Equations
泛函分析和偏微分方程
- 批准号:
551666-2020 - 财政年份:2020
- 资助金额:
$ 1.46万 - 项目类别:
University Undergraduate Student Research Awards
Dynamics of Functional Differential Equations with Applications in Epidemiology
泛函微分方程动力学及其在流行病学中的应用
- 批准号:
RGPIN-2016-06134 - 财政年份:2020
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Functional Differential Equations in Biology and Epidemiology
生物学和流行病学中的泛函微分方程
- 批准号:
RGPIN-2017-04257 - 财政年份:2020
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Bifurcations: functional differential equations and waves in inhomogeneous media
分岔:非均匀介质中的泛函微分方程和波
- 批准号:
RGPIN-2016-04318 - 财政年份:2019
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Dynamics of Functional Differential Equations with Applications to Biology and Ecology
泛函微分方程动力学及其在生物学和生态学中的应用
- 批准号:
RGPIN-2015-05686 - 财政年份:2019
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Dynamics of Functional Differential Equations with Applications in Epidemiology
泛函微分方程动力学及其在流行病学中的应用
- 批准号:
RGPIN-2016-06134 - 财政年份:2019
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual