Graph searching - structural properties

图搜索-结构特性

基本信息

  • 批准号:
    RGPIN-2017-05065
  • 负责人:
  • 金额:
    $ 1.46万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2019
  • 资助国家:
    加拿大
  • 起止时间:
    2019-01-01 至 2020-12-31
  • 项目状态:
    已结题

项目摘要

Cops-and-robbers*games have been studied since the 1980's, especially after the*discovery of connections with various graph widths. Algorithmic and complexity questions*seem to dominate the field because of applications in optimisation, among other things, but some basic questions remain unanswered: the cop-number of a graph, a characterisation of k-cop-win graphs, the length of an optimal game, etc.*We wish to study these basic questions for the game as defined by Nowakowski and*Winkler, and by Quillot, and to consider new models. Our graph theory*group (two researchers, up to five students) has been studying the*influence of loops on the number of cops needed (there are graphs that alternate between cop-win*and not with the addition of loops one by one starting with a loopless graph). *In the summer 2016*we have worked on a version of the game in which the cops have to catch*the robber at a specified vertex (this is no longer a total knowledge game, the robber does not know the vertex). We wish to continue*studying these variants where we have some preliminary results. Our algorithm to decide whether k cops can catch r robbers on a given*(finite) graph is used in robotics for robot motion planning and we think that specifying a capture vertex and an algorithm to describe a strategy would also be useful to roboticists.*Further, we would like to generalise by considering not only the number of cops needed to catch the*robber, but also the cost of doing so. Perhaps having a few more cops*would cost less? The main problem here is defining the cost. We have considered several*possibilities and will continue in this direction.*Since finite regular graphs are not cop-win unless complete, Cayley graphs have not been much considered. We think they*are worth looking at again, especially in connection with some of the models (vaguely) described*above.****Last, we wish to study cop-win infinite graphs. We believe that understanding the infinite brings an understanding of the finite. Cops-and-robbers games on infinite graphs are different (there are many cop-win vertex transitive infinite graphs but only complete finite ones). A*recent paper by Lehner suggests that we have been looking the problem backwards, overlooking the fact that the reverse of a well-order is a well-order for finite graphs but not for infinite ones. Thus any attempt at*characterising infinite cop-win graphs through an ordering like that for finite ones is doomed to*failure. This indicates that even for*finite graphs we should reconsider our approach. We propose to do just that.****A part of the study of infinite cop-win graphs are the implications to structural properties of graphs. Generalising a*construction from our 2009 paper we have examples of universal countable graphs that are*different from the unique (ultra)homogeneous countable graph (the random, or Rado, graph).*We wish to continue studying such structures.***
警察和强盗 * 游戏自20世纪80年代以来一直在研究,特别是在发现不同图宽度的连接之后。由于在优化等方面的应用,数学和复杂性问题似乎占据了主导地位,但一些基本问题仍然没有得到解答:图的cop-number,k-cop-win图的特征,最优博弈的长度等。我们希望研究Nowakowski和 *Winkler以及Quillot定义的博弈的这些基本问题,并考虑新的模型。我们的图论 * 小组(两名研究人员,最多五名学生)一直在研究循环对所需的cops数量的影响(有一些图在cop-win* 之间交替,而不是从一个无环图开始一个接一个地添加循环)。* 在2016年夏天 *,我们开发了一个版本的游戏,在这个版本中,警察必须在指定的顶点抓住 * 强盗(这不再是一个完全的知识游戏,强盗不知道顶点)。我们希望继续 * 研究这些变种,我们有一些初步的结果。我们的算法,以决定是否k个警察可以抓住r个强盗在一个给定的 *(有限)图是用于机器人的机器人运动规划,我们认为,指定一个捕获顶点和算法来描述一个战略也将是有用的机器人专家。此外,我们不仅要考虑抓住劫匪所需的警察数量,还要考虑这样做的成本。也许多几个警察 * 会花更少的钱?这里的主要问题是确定成本。我们已经考虑了几种可能性,并将继续朝着这个方向努力。由于有限正则图只有在完备的情况下才是cop-win的,因此Cayley图并没有得到太多的考虑。我们认为它们 * 值得再次研究,特别是与上面描述的一些模型(模糊)有关。最后,我们希望研究cop-win无限图。我们相信,理解无限带来了对有限的理解。无限图上的Cops-and-Robbers博弈是不同的(有许多Cops-win顶点传递无限图,但只有完全有限图)。Lehner最近的一篇论文表明,我们一直在向后看这个问题,忽略了一个事实,即良序的逆对于有限图是良序,但对于无限图不是良序。因此,任何试图通过类似于有限图的排序来刻画无限cop-win图的尝试都注定要失败。这表明,即使对于 * 有限图,我们也应该重新考虑我们的方法。我们建议这样做。无限cop-win图的研究的一部分是图的结构性质的影响。从我们2009年的论文中推广一个 * 构造,我们有泛可数图的例子,它们 * 不同于唯一(超)齐次可数图(随机或Rado图)。我们希望继续研究这种结构。*

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Hahn, Gena其他文献

Hahn, Gena的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Hahn, Gena', 18)}}的其他基金

Graph searching - structural properties
图搜索-结构特性
  • 批准号:
    RGPIN-2017-05065
  • 财政年份:
    2022
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Graph searching - structural properties
图搜索-结构特性
  • 批准号:
    RGPIN-2017-05065
  • 财政年份:
    2021
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Graph searching - structural properties
图搜索-结构特性
  • 批准号:
    RGPIN-2017-05065
  • 财政年份:
    2020
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Graph searching - structural properties
图搜索-结构特性
  • 批准号:
    RGPIN-2017-05065
  • 财政年份:
    2018
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Graph searching and applications
图搜索及应用
  • 批准号:
    199-2012
  • 财政年份:
    2016
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Graph searching and applications
图搜索及应用
  • 批准号:
    199-2012
  • 财政年份:
    2015
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Graph searching and applications
图搜索及应用
  • 批准号:
    199-2012
  • 财政年份:
    2014
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Graph searching and applications
图搜索及应用
  • 批准号:
    199-2012
  • 财政年份:
    2013
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Graph searching and applications
图搜索及应用
  • 批准号:
    199-2012
  • 财政年份:
    2012
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Graphs theoretic aspects of networks
网络的图论方面
  • 批准号:
    199-2005
  • 财政年份:
    2009
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual

相似海外基金

Improving phage-based medicine with immunoengineering
通过免疫工程改进基于噬菌体的医学
  • 批准号:
    10572011
  • 财政年份:
    2023
  • 资助金额:
    $ 1.46万
  • 项目类别:
Graph searching - structural properties
图搜索-结构特性
  • 批准号:
    RGPIN-2017-05065
  • 财政年份:
    2022
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Graph searching - structural properties
图搜索-结构特性
  • 批准号:
    RGPIN-2017-05065
  • 财政年份:
    2021
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Searching for the ingredients of life on Mars - unraveling the effects of impacts using correlative structural and chemical techniques
寻找火星上生命的成分 - 使用相关的结构和化学技术揭示撞击的影响
  • 批准号:
    534938-2019
  • 财政年份:
    2020
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Graph searching - structural properties
图搜索-结构特性
  • 批准号:
    RGPIN-2017-05065
  • 财政年份:
    2020
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Searching for the ingredients of life on Mars - unraveling the effects of impacts using correlative structural and chemical techniques
寻找火星上生命的成分 - 使用相关的结构和化学技术揭示撞击的影响
  • 批准号:
    534938-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Graph searching - structural properties
图搜索-结构特性
  • 批准号:
    RGPIN-2017-05065
  • 财政年份:
    2018
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Binding MOAD: A Database of Protein-Ligand Information
结合 MOAD:蛋白质配体信息数据库
  • 批准号:
    9367088
  • 财政年份:
    2017
  • 资助金额:
    $ 1.46万
  • 项目类别:
Evidence Extraction Systems for the Molecular Interaction Literature
分子相互作用文献证据提取系统
  • 批准号:
    9983144
  • 财政年份:
    2017
  • 资助金额:
    $ 1.46万
  • 项目类别:
Incorporating Image-based Features into Biomedical Document Classification
将基于图像的特征纳入生物医学文档分类
  • 批准号:
    9762175
  • 财政年份:
    2017
  • 资助金额:
    $ 1.46万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了