Wave manipulation using metamaterials for imaging, power concentration, and telecommunications
使用超材料进行波操纵,用于成像、功率集中和电信
基本信息
- 批准号:RGPIN-2014-03639
- 负责人:
- 金额:$ 1.6万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2019
- 资助国家:加拿大
- 起止时间:2019-01-01 至 2020-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
As communication data rates increase and mobile electronics proliferate, the need for advanced research into wireless antennas and wireless power transfer is critical. Metamaterials-artificial materials with exotic electric and magnetic properties-provide a means to achieve precisely this kind of research. Metamaterials can manipulate electromagnetic fields (light, radio waves, microwaves, etc.) to produce strange phenomena such as waves that appear to flow backwards and waves that bend "the wrong way" when they hit an interface. With the entire telecommunications industry invested heavily in wireless networks, any improvements in antenna performance will have a wide-reaching impact. Through careful design, the exotic properties of metamaterials can be used to guide the radiation of an antenna so it can maintain a highly directive beam at a fixed angle over a large frequency range. This allows the resulting wireless link to operate over a wider bandwidth and support higher data rates for faster and more reliable mobile connectivity. Metamaterials can also be used to focus the power transmitted by one antenna towards another in order to make wireless power transfer more efficient at larger distances. Improving efficiency is a big step towards putting wireless power sources in every home in Canada and revolutionizing the way we power and recharge our devices.**The objective of this Discovery program is to study wave propagation in metamaterials in order to develop novel devices related to imaging, power concentration, and telecommunications. The field of metamaterials is relatively young; the first demonstrative experiment was performed 12 years ago and we still don't understand all their limitations. It is therefore essential for this program to continue investigating the electromagnetics of metamaterials. These investigations provide us with the insights necessary to apply metamaterials to new devices like negative-refractive-index lenses or improve on existing technology as was done with the miniaturization of microwave circuit elements. Over the next five years this objective will be applied to the two research themes touched upon in the introduction: near-field power concentration using antenna arrays, and transformation-optics metamaterials for antenna design. This program will provide graduate and undergraduate students with an excellent opportunity to be involved in cutting-edge research on topics which industry holds in high demand.**Over the last five years I developed antenna arrays to focus electric and magnetic fields to spots smaller than the wavelength of operation. Before the discovery of metamaterials, this was thought to violate a fundamental law of diffraction which states that light cannot be focused smaller than the wavelength. I am now proposing to adapt this focusing technique to concentrate power to subwavelength spots for localized heating of materials and for wireless power transfer applications. Typically, near-field power transfer and heating are performed with a single source element, so the use of multiple elements will extend the range of operation by an estimated factor of two.**For my second research theme on high bandwidth directive antennas, I will place metamaterial layers with gradually changing electromagnetic parameters over a leaky-wave antenna in order to redirect the radiated beam at a fixed angle and double the operating bandwidth.**Research into the physics of metamaterials provides the theoretical foundation necessary to pursue advanced research on antennas for wireless data links and wireless power transfer. These topics are of great interest to the telecommunication industry and metamaterials provide an exciting opportunity to make a significant contribution to this field.
随着通信数据速率的增加和移动电子设备的激增,对无线天线和无线电力传输的先进研究是至关重要的。超材料——具有奇异的电和磁特性的人造材料——为实现这类研究提供了一种手段。超材料可以操纵电磁场(光、无线电波、微波等)来产生奇怪的现象,比如看起来向后流动的波,以及当波碰到界面时“错误的方向”弯曲的波。随着整个电信行业在无线网络上的大量投资,天线性能的任何改进都将产生广泛的影响。通过精心设计,超材料的奇异特性可以用来引导天线的辐射,使其能够在很大的频率范围内以固定的角度保持高度定向的波束。这使得由此产生的无线链路可以在更宽的带宽上运行,并支持更高的数据速率,从而实现更快、更可靠的移动连接。超材料还可以用来将一根天线传输的能量集中到另一根天线上,以便在更远的距离上更有效地进行无线电力传输。提高效率是向在加拿大的每个家庭中安装无线电源迈出的一大步,它将彻底改变我们为设备供电和充电的方式。**这个发现项目的目的是研究波在超材料中的传播,以开发与成像、能量集中和电信相关的新设备。超材料领域相对年轻;第一个示范性实验是在12年前进行的,我们仍然不了解它们的所有局限性。因此,这个项目必须继续研究超材料的电磁学。这些研究为我们提供了将超材料应用于新设备(如负折射率透镜)或改进现有技术(如微波电路元件小型化)所必需的见解。在接下来的五年里,这一目标将应用于引言中提到的两个研究主题:使用天线阵列的近场功率集中,以及用于天线设计的变换光学超材料。该项目将为研究生和本科生提供一个极好的机会,参与行业高需求主题的前沿研究。**在过去的五年里,我开发了天线阵列,将电场和磁场聚焦到比操作波长更小的点上。在发现超材料之前,这被认为违反了衍射的基本定律,即光不能聚焦于小于波长的地方。我现在建议采用这种聚焦技术,将能量集中到亚波长点,用于材料的局部加热和无线电力传输应用。通常,近场功率传输和加热是用单个源元件进行的,因此使用多个元件将使操作范围扩大两倍。**我的第二个研究主题是高带宽定向天线,我将在漏波天线上放置具有逐渐变化的电磁参数的超材料层,以使辐射波束以固定角度重新定向,使工作带宽翻倍。**对超材料物理学的研究为进一步研究无线数据链路和无线电力传输天线提供了必要的理论基础。这些话题是电信行业非常感兴趣的,超材料提供了一个令人兴奋的机会,可以为这一领域做出重大贡献。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Markley, Loïc其他文献
Markley, Loïc的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Markley, Loïc', 18)}}的其他基金
Electromagnetic periodic structures and metamaterials for imaging and wireless technology
用于成像和无线技术的电磁周期结构和超材料
- 批准号:
RGPIN-2020-05403 - 财政年份:2022
- 资助金额:
$ 1.6万 - 项目类别:
Discovery Grants Program - Individual
Electromagnetic periodic structures and metamaterials for imaging and wireless technology
用于成像和无线技术的电磁周期结构和超材料
- 批准号:
RGPIN-2020-05403 - 财政年份:2021
- 资助金额:
$ 1.6万 - 项目类别:
Discovery Grants Program - Individual
Single-layer frequency-selective wallpaper for Wi-Fi blocking in the built environment
用于建筑环境中 Wi-Fi 屏蔽的单层频率选择性壁纸
- 批准号:
543411-2019 - 财政年份:2020
- 资助金额:
$ 1.6万 - 项目类别:
Collaborative Research and Development Grants
Electromagnetic periodic structures and metamaterials for imaging and wireless technology
用于成像和无线技术的电磁周期结构和超材料
- 批准号:
RGPIN-2020-05403 - 财政年份:2020
- 资助金额:
$ 1.6万 - 项目类别:
Discovery Grants Program - Individual
Single-layer frequency-selective wallpaper for Wi-Fi blocking in the built environment
用于建筑环境中 Wi-Fi 屏蔽的单层频率选择性壁纸
- 批准号:
543411-2019 - 财政年份:2019
- 资助金额:
$ 1.6万 - 项目类别:
Collaborative Research and Development Grants
Cost effective frequency selective surfaces for WiFi shielding in the built environment
用于建筑环境中 WiFi 屏蔽的经济高效的频率选择表面
- 批准号:
507415-2016 - 财政年份:2016
- 资助金额:
$ 1.6万 - 项目类别:
Engage Grants Program
A low-profile wide-beam antenna for RFID chip timing systems
用于 RFID 芯片计时系统的薄型宽波束天线
- 批准号:
486059-2015 - 财政年份:2015
- 资助金额:
$ 1.6万 - 项目类别:
Engage Grants Program
Real-time near-field subwavelength-focused imaging using dense antenna arrays.
使用密集天线阵列进行实时近场亚波长聚焦成像。
- 批准号:
421090-2012 - 财政年份:2012
- 资助金额:
$ 1.6万 - 项目类别:
Postdoctoral Fellowships
Multi-layer negative-refractive-index metamaterial for normally incident plane waves
用于垂直入射平面波的多层负折射率超材料
- 批准号:
348853-2007 - 财政年份:2008
- 资助金额:
$ 1.6万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Multi-layer negative-refractive-index metamaterial for normally incident plane waves
用于垂直入射平面波的多层负折射率超材料
- 批准号:
348853-2007 - 财政年份:2007
- 资助金额:
$ 1.6万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
相似国自然基金
冷原子系统自旋压缩的理论研究
- 批准号:10804007
- 批准年份:2008
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Formation of thin liquid film and manipulation of convection using active control of surface tension
利用表面张力的主动控制形成液膜并控制对流
- 批准号:
23K03690 - 财政年份:2023
- 资助金额:
$ 1.6万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of tangible user interface using ultrasonic microfluidic manipulation platform
使用超声波微流体操纵平台开发有形用户界面
- 批准号:
23K16916 - 财政年份:2023
- 资助金额:
$ 1.6万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Investigating mitochondrial dysfunction in neurodegeneration using A Nanoparticle-based Synthetic Mitochondrial DNA (mtDNA) Transcription Regulator
使用基于纳米颗粒的合成线粒体 DNA (mtDNA) 转录调节器研究神经退行性变中的线粒体功能障碍
- 批准号:
10679826 - 财政年份:2023
- 资助金额:
$ 1.6万 - 项目类别:
Modeling Alzheimer's Disease in Hispanic Latino populations using human cortical organoids
使用人类皮质类器官模拟西班牙裔拉丁裔人群的阿尔茨海默病
- 批准号:
10680168 - 财政年份:2023
- 资助金额:
$ 1.6万 - 项目类别:
Investigating the role of sleep in brain resilience during aging using a scalable and short-lived vertebrate model
使用可扩展且寿命较短的脊椎动物模型研究睡眠在衰老过程中大脑恢复能力中的作用
- 批准号:
10740068 - 财政年份:2023
- 资助金额:
$ 1.6万 - 项目类别:
Enhancing immune mediated head and neck cancer anti-tumor activity using nanoparticles
使用纳米粒子增强免疫介导的头颈癌抗肿瘤活性
- 批准号:
10747013 - 财政年份:2023
- 资助金额:
$ 1.6万 - 项目类别:
Analysis of Melanopsin Cell Response Characteristics in Humans Using Blind Spot Stimulation and Light Manipulation
使用盲点刺激和光操纵分析人类黑视蛋白细胞反应特征
- 批准号:
23K09035 - 财政年份:2023
- 资助金额:
$ 1.6万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
HCC: Small: 3DStylus: User-Guided Shape Manipulation using Neural Priors
HCC:小型:3DStylus:使用神经先验进行用户引导的形状操作
- 批准号:
2304481 - 财政年份:2023
- 资助金额:
$ 1.6万 - 项目类别:
Standard Grant
Assessing the role of corticostriatal circuitry in polysubstance use of fentanyl and methamphetamine using rat self-administration models
使用大鼠自我给药模型评估皮质纹状体回路在芬太尼和甲基苯丙胺多物质使用中的作用
- 批准号:
10737092 - 财政年份:2023
- 资助金额:
$ 1.6万 - 项目类别:
Evolution of the Cerebral Cortex by Experimental Manipulation Using Cell Cycle Withdrawal Delay
利用细胞周期撤回延迟进行实验操作大脑皮层的进化
- 批准号:
23K18169 - 财政年份:2023
- 资助金额:
$ 1.6万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)














{{item.name}}会员




