Understanding and exploiting ligand-driven nanoparticle interfacial phenomena
理解和利用配体驱动的纳米颗粒界面现象
基本信息
- 批准号:RGPIN-2018-06594
- 负责人:
- 金额:$ 1.75万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2019
- 资助国家:加拿大
- 起止时间:2019-01-01 至 2020-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
How nanoparticles (NPs) interact with their environment is a question that lies at the heart of many of our most promising potential nanotechnologies: from designing and predicting safe and effective use of NPs within living systems, to forming stretchable or self-healing films and composites, to assembling nanoparticles into superstructures for next generation solar cells, LEDs, and other applications. Nanoparticles present a complex interface through which they can interact with their environment, and this complexity arises from variety of possible NP core shapes and sizes which in turn define the available surface chemistry and the physical properties of the nanoparticle coating. Within the great variety of synthetically-available nanoparticle systems, thiol-capped gold nanoparticles are among the most thoroughly studied. Despite this fact, there remain many fundamental questions regarding how NPs behave in different environmental conditions (i.e. what makes a “good solvent” good? How can this influence how NPs interact with biological membranes?). Such questions are central to the counter-intuitive trends often observed in the physical properties (solubility and self-assembly) previously observed in these systems.***This research program will improve our understanding of the physical properties (mixing) of a model nanoparticle system consisting of spherical thiol-capped gold nanoparticles of various gold core sizes and thiol capping layer densities. We aim to achieve insights that can be applied to nanoparticles in general, and subsequently will be used to study more complex nanoparticle systems consisting of mixed capping layers consisting of two types of ligands (hydrophobic/philic) as well rod-shaped nanoparticles. By controlling interfacial parameters (temperature, solvation affinity to the oil or water phase), we will clarify some of the key nanoparticle properties in different environments and establish much needed guidelines for designing nanoparticles for a given application.
纳米粒子(NPs)如何与环境相互作用是我们许多最有前途的潜在纳米技术的核心问题:从设计和预测生命系统中安全有效地使用NPs,到形成可拉伸或自我修复的薄膜和复合材料,再到将纳米粒子组装成下一代太阳能电池,LED和其他应用的超级结构。 纳米颗粒呈现出复杂的界面,通过该界面它们可以与其环境相互作用,并且这种复杂性源于各种可能的NP核形状和尺寸,这些形状和尺寸又限定了纳米颗粒涂层的可用表面化学和物理性质。在各种各样的合成可用的纳米粒子系统中,硫醇封端的金纳米粒子是研究最彻底的。 尽管如此,关于纳米粒子在不同环境条件下的行为,仍然存在许多基本问题(即,什么使“良好溶剂”良好?这如何影响纳米粒子与生物膜的相互作用?)。这些问题是在这些系统中以前观察到的物理性质(溶解度和自组装)中经常观察到的反直觉趋势的核心。该研究计划将提高我们对模型纳米颗粒系统的物理性质(混合)的理解,该模型纳米颗粒系统由各种金核尺寸和硫醇覆盖层密度的球形硫醇覆盖的金纳米颗粒组成。我们的目标是实现的见解,可以应用到纳米粒子一般,随后将用于研究更复杂的纳米粒子系统组成的混合盖层组成的两种类型的配体(疏水/亲)以及棒状纳米粒子。通过控制界面参数(温度,溶剂化亲和力的油或水相),我们将澄清在不同的环境中的一些关键的纳米粒子的属性,并建立急需的指导方针,为特定的应用设计纳米粒子。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Meli, Vicki其他文献
Meli, Vicki的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Meli, Vicki', 18)}}的其他基金
Understanding and exploiting ligand-driven nanoparticle interfacial phenomena
理解和利用配体驱动的纳米颗粒界面现象
- 批准号:
RGPIN-2018-06594 - 财政年份:2022
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Understanding and exploiting ligand-driven nanoparticle interfacial phenomena
理解和利用配体驱动的纳米颗粒界面现象
- 批准号:
RGPIN-2018-06594 - 财政年份:2021
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Understanding and exploiting ligand-driven nanoparticle interfacial phenomena
理解和利用配体驱动的纳米颗粒界面现象
- 批准号:
RGPIN-2018-06594 - 财政年份:2020
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Understanding and exploiting ligand-driven nanoparticle interfacial phenomena
理解和利用配体驱动的纳米颗粒界面现象
- 批准号:
RGPIN-2018-06594 - 财政年份:2018
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
相似海外基金
Exploiting markers of genomic instability in high-risk pre-invasive ovarian cancer
利用高风险浸润前卵巢癌基因组不稳定性标记
- 批准号:
10719535 - 财政年份:2023
- 资助金额:
$ 1.75万 - 项目类别:
Understanding and exploiting ligand-driven nanoparticle interfacial phenomena
理解和利用配体驱动的纳米颗粒界面现象
- 批准号:
RGPIN-2018-06594 - 财政年份:2022
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Understanding and exploiting ligand-driven nanoparticle interfacial phenomena
理解和利用配体驱动的纳米颗粒界面现象
- 批准号:
RGPIN-2018-06594 - 财政年份:2021
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Exploiting Water Network Perturbations in Protein Binding Sites
利用蛋白质结合位点的水网络扰动
- 批准号:
10621368 - 财政年份:2021
- 资助金额:
$ 1.75万 - 项目类别:
Exploiting Water Network Perturbations in Protein Binding Sites
利用蛋白质结合位点的水网络扰动
- 批准号:
10457410 - 财政年份:2021
- 资助金额:
$ 1.75万 - 项目类别:
Exploiting Water Network Perturbations in Protein Binding Sites
利用蛋白质结合位点的水网络扰动
- 批准号:
10275296 - 财政年份:2021
- 资助金额:
$ 1.75万 - 项目类别:
Exploiting the VISTA Pathway to Prevent Acute GVHD and Control Steroid Refractory Disease
利用 VISTA 途径预防急性 GVHD 和控制类固醇难治性疾病
- 批准号:
10560605 - 财政年份:2021
- 资助金额:
$ 1.75万 - 项目类别:
Exploiting the VISTA Pathway to Prevent Acute GVHD and Control Steroid Refractory Disease
利用 VISTA 途径预防急性 GVHD 和控制类固醇难治性疾病
- 批准号:
10092348 - 财政年份:2021
- 资助金额:
$ 1.75万 - 项目类别:
Exploiting the VISTA Pathway to Prevent Acute GVHD and Control Steroid Refractory Disease
利用 VISTA 途径预防急性 GVHD 和控制类固醇难治性疾病
- 批准号:
10348683 - 财政年份:2021
- 资助金额:
$ 1.75万 - 项目类别:
Exploiting the Mechanobiology of PD-1 for Cancer Immunotherapy
利用 PD-1 的力学生物学进行癌症免疫治疗
- 批准号:
10174887 - 财政年份:2020
- 资助金额:
$ 1.75万 - 项目类别: