Using Machine Learning and Google street View for Condition Assessment of Wood Poles

使用机器学习和谷歌街景进行木杆状况评估

基本信息

  • 批准号:
    544129-2019
  • 负责人:
  • 金额:
    $ 1.82万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Engage Grants Program
  • 财政年份:
    2019
  • 资助国家:
    加拿大
  • 起止时间:
    2019-01-01 至 2020-12-31
  • 项目状态:
    已结题

项目摘要

In today power systems, extensive progress is being made in the energy transition from centralized fossilfuel generation to renewable distributed generation sources namely wind and solar. However, this new development is limited by numerous existing challenges in the distribution systems including the aging infrastructure and policy issues. As a result, the bulk share of capital spending is directed towards renewal project hence leaving little or no room to invest in smart grid initiatives. Aging infrastructure employed on power distribution systems requires major capital investments into renewal and maintenance of aged assets to ascertain that the distribution systems continue to operate with increased level of safety and reliability. These capital investments are primarily driven by increased public scrutiny from interveners and energy regulators. The wood poles represent major fraction of asset total replacement value in any distribution system hence the condition assessment of wood poles is of great significance. To date, condition assessment of wood poles is performed manually by inspecting each pole which is a labor-intensive inspection data gathering process. The key objective of this project is to apply machine learning technique and google street view to estimate the condition of wood poles used in power distribution systems. The proposed smart approach would increase safety for employees and end customers while ensuring reliable power delivery to the community.
在当今的电力系统中,从集中式化石燃料发电向可再生分布式发电(即风能和太阳能)的能源过渡正在取得广泛进展。然而,这一新的发展受到分配系统中许多现有挑战的限制,包括基础设施老化和政策问题。因此,资本支出的大部分用于更新项目,因此很少或根本没有投资于智能电网倡议的空间。配电系统上使用的老化基础设施需要大量资本投资更新和维护老化资产,以确保配电系统继续以更高的安全和可靠性水平运行。这些资本投资主要是由干预者和能源监管机构加强的公众监督推动的。在任何分配系统中,木杆都是资产重置价值的主要组成部分,因此对木杆的状态评估具有重要意义。到目前为止,木杆的状态评估是通过对每根杆子进行检查来手动进行的,这是一个劳动密集型的检查数据收集过程。该项目的主要目标是应用机器学习技术和谷歌街景来评估配电系统中使用的木杆的状况。拟议的智能方法将提高员工和最终客户的安全,同时确保向社区可靠地供电。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

RezaeiZare, Afshin其他文献

RezaeiZare, Afshin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('RezaeiZare, Afshin', 18)}}的其他基金

Analysis and Enhancement of Power Grid Resilience to Geomagnetic Disturbance
电网地磁干扰能力分析与增强
  • 批准号:
    RGPIN-2018-05930
  • 财政年份:
    2022
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Determination of Withstand Capability of Power Transformers Under GIC Conditions
GIC条件下电力变压器耐受能力的测定
  • 批准号:
    570925-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Alliance Grants
Analysis and Enhancement of Power Grid Resilience to Geomagnetic Disturbance
电网地磁干扰能力分析与增强
  • 批准号:
    RGPIN-2018-05930
  • 财政年份:
    2021
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Concept Design of a High-Voltage Electrostatic Sanitizer to Prevent Spread of COVID-19
防止 COVID-19 传播的高压静电消毒器的概念设计
  • 批准号:
    555053-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Alliance Grants
Analysis and Enhancement of Power Grid Resilience to Geomagnetic Disturbance
电网地磁干扰能力分析与增强
  • 批准号:
    RGPIN-2018-05930
  • 财政年份:
    2020
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Analysis and Enhancement of Power Grid Resilience to Geomagnetic Disturbance
电网地磁干扰能力分析与增强
  • 批准号:
    RGPIN-2018-05930
  • 财政年份:
    2019
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Geomagnetic disturbance (GMD) simulator for power system - Phase I
电力系统地磁扰动(GMD)模拟器-第一阶段
  • 批准号:
    545147-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Idea to Innovation
Analysis and Enhancement of Power Grid Resilience to Geomagnetic Disturbance
电网地磁干扰能力分析与增强
  • 批准号:
    RGPIN-2018-05930
  • 财政年份:
    2018
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Analysis and Enhancement of Power Grid Resilience to Geomagnetic Disturbance
电网地磁干扰能力分析与增强
  • 批准号:
    DGECR-2018-00067
  • 财政年份:
    2018
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Launch Supplement

相似国自然基金

Understanding structural evolution of galaxies with machine learning
  • 批准号:
    n/a
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目

相似海外基金

I-Corps: Translation potential of using machine learning to predict oxaliplatin chemotherapy benefit in early colon cancer
I-Corps:利用机器学习预测奥沙利铂化疗对早期结肠癌疗效的转化潜力
  • 批准号:
    2425300
  • 财政年份:
    2024
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Standard Grant
Postdoctoral Fellowship: OCE-PRF: Using machine learning to investigate temporal dynamics of methane seep fauna at the Ocean Observatories Initiative (OOI) Regional Cabled Array
博士后奖学金:OCE-PRF:利用机器学习研究海洋观测计划 (OOI) 区域有线阵列中甲烷渗漏动物群的时间动态
  • 批准号:
    2307504
  • 财政年份:
    2024
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Standard Grant
An innovative cyber compliance platform using AI, live monitoring data and machine learning to automate compliance and due diligence completion.
一个创新的网络合规平台,使用人工智能、实时监控数据和机器学习来自动完成合规和尽职调查。
  • 批准号:
    10100493
  • 财政年份:
    2024
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Collaborative R&D
Accelerating pulse breeding using machine learning
利用机器学习加速豆类育种
  • 批准号:
    LP230100351
  • 财政年份:
    2024
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Linkage Projects
Is evolution predictable? Unlocking fundamental biological insights using new machine learning methods
进化是可预测的吗?
  • 批准号:
    MR/X033880/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Fellowship
Enhancing Condition Monitoring and Prognostics of Variable Speed Motor Drives Using Machine Learning and IoT Technologies
使用机器学习和物联网技术增强变速电机驱动器的状态监测和预测
  • 批准号:
    2910604
  • 财政年份:
    2024
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Studentship
Design of Novel Heterostructures for Future Application in Optoelectronics using First Principle Simulations and Machine Learning
使用第一原理模拟和机器学习设计用于未来光电子学应用的新型异质结构
  • 批准号:
    24K17615
  • 财政年份:
    2024
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Using Novel Machine Learning Methods to Personalize Strategies for Prevention of Persistent AKI after Cardiac Surgery
使用新颖的机器学习方法制定个性化策略,预防心脏手术后持续性 AKI
  • 批准号:
    10979324
  • 财政年份:
    2024
  • 资助金额:
    $ 1.82万
  • 项目类别:
A Human-Trustable Self-Improving Machine Learning Framework for Rapid Disaster Responses Using Satellite Sensor Imagery
人类可信的自我改进机器学习框架,利用卫星传感器图像快速响应灾难
  • 批准号:
    EP/X027732/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Research Grant
NSF-SNSF: Rapid Beamforming for Massive MIMO using Machine Learning on RF-only and Multi-modal Sensor Data
NSF-SNSF:在纯射频和多模态传感器数据上使用机器学习实现大规模 MIMO 的快速波束成形
  • 批准号:
    2401047
  • 财政年份:
    2024
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了