Poly-Time Knot Theory and Quantum Algebra

多时间结理论和量子代数

基本信息

  • 批准号:
    RGPIN-2018-04350
  • 负责人:
  • 金额:
    $ 2.04万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2019
  • 资助国家:
    加拿大
  • 起止时间:
    2019-01-01 至 2020-12-31
  • 项目状态:
    已结题

项目摘要

One of the major triumphs of mathematics in the 1980s, which lead to at least 3 Fields medals (Jones, Drinfel'd, Witten) was the unexpected realization that low dimensional topology, and in particular knot theory, is closely related to quantum field theory and to the theory of quantum groups. Knot theory is mundane and ages-old; anything "quantum" seems hyper-modern. Why would the two have anything to do with each other?******The answer is long and complicated and has a lot to do with the "Yang-Baxter Equation" (YBE). The YBE on the one hand can be interpreted in knot theory as "the third Reidemeister move", or as "controlling the most basic interaction of 3 pieces of string" (this turns out to be a very crucial part of knot theory). On the other hand solutions of the YBE arise from "quantum" machinery. Hence the quantum is useful to the knotted, and by similar ways, to the rest of low dimensional topology.******But "quantum" has a caveat, which makes it super-exciting (to some) yet bounds its usefulness (to others). When quantum systems grow large (as they do when the knot or low-dimensional space we study grows complicated), their "state space" grows at an exponential rate. "Quantum computers" aim to exploit this fact and make large quantum systems performs overwhelmingly large computations by utilizing their vast state spaces. But quantum computers aren't here yet, may take many years to come, suffer from other limits on what they can do, and much of low-dimensional topology is anyway outside of these limits. So at least for now and likely forever, many things that have "quantum" in their description are exponentially-complex to compute, which in practice means that they cannot be computed beyond a few simple cases.******Recently Van der Veen and myself, following Rozansky and Overbay, found a corner (figuratively speaking) of the vast state space of the quantum machinery used in knot theory, which can be described in just polynomial complexity, and which carries enough information to still speak to knot theory. The "knot invariants" constructed that way seem to be the strongest invariants we know that are computable even for very large knots.******Our approach utilizes the fact that complicated symmetry groups often have much simpler "contractions". A well known example is the Lorentz group of relativity theory, which at small velocities contracts to the Galilean group of classical mechanics. In a similar manner we find that the symmetry algebras underlying the useful solutions of the Yang-Baxter equation, namely semi-simple algebras such as sl(n), have contractions that are "solvable algebras", and that the same operations that are exponentially complex for the original sl(n) symmetry become polynomially-complex (namely, much simpler) within and near these solvable contractions.******Much remains to be done: implementation, documentation, application, generalization. I hope to achieve all that over this 5-year grant period.
20世纪80年代数学的主要成就之一是意外地认识到低维拓扑,特别是纽结理论,与量子场论和量子群理论密切相关,这导致了至少三个菲尔兹奖(琼斯、德伦费尔、威腾)。纽结理论是平凡而古老的;任何“量子”似乎都是超现代的。为什么这两者会有任何关系呢?答案既长又复杂,与“杨-巴克斯特方程”(YBE)有很大关系。在纽结理论中,纽结一方面可以被解释为“第三步莱德迈斯特动作”,或者“控制三根弦的最基本的相互作用”(这被证明是纽结理论中非常关键的部分)。另一方面,“可能”的解决方案来自“量子”机制。因此,量子对于结点和低维拓扑的其余部分都是有用的。*但是“量子”有一个警告,这使得它非常令人兴奋(对一些人),但也限制了它的有用性(对另一些人)。当量子系统变大时(就像我们研究的结点或低维空间变得复杂时),它们的“状态空间”会以指数速度增长。“量子计算机”旨在利用这一事实,使大型量子系统通过利用其巨大的状态空间来执行压倒性的大规模计算。但量子计算机还没有出现,可能还需要很多年的时间,它们的功能还受到其他限制,而且许多低维拓扑结构无论如何都超出了这些限制。因此,至少就目前而言,也可能永远如此,许多描述中含有“量子”的事物对于计算来说都是指数复杂的,这实际上意味着它们不能超越几种简单的情况进行计算。*最近,范德维恩和我跟随罗赞斯基和奥弗贝,发现了纽结理论中所使用的量子力学的巨大状态空间的一个角落(比喻地说),它可以用多项式的复杂性来描述,并且携带了足够的信息,仍然可以谈论纽结理论。以这种方式构造的“纽结不变量”似乎是我们所知的最强的不变量,即使对于非常大的纽结也是可以计算的。*我们的方法利用了这样一个事实,即复杂的对称群通常有更简单的“收缩”。一个著名的例子是相对论的洛伦兹群,它以较小的速度收缩到伽利略经典力学群。以类似的方式,我们发现作为Yang-Baxter方程有用解的基础的对称代数,即半单代数,如sl(N),具有“可解代数”的压缩,并且在这些可解压缩的内部和附近,对于原始sl(N)对称是指数复数的相同运算变成多项式复数(即,简单得多)。*仍有许多工作要做:实现、文献、应用、推广。我希望在这5年的资助期内实现所有这些目标。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

BarNatan, Dror其他文献

BarNatan, Dror的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('BarNatan, Dror', 18)}}的其他基金

Poly-Time Knot Theory and Quantum Algebra
多时间结理论和量子代数
  • 批准号:
    RGPIN-2018-04350
  • 财政年份:
    2022
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Poly-Time Knot Theory and Quantum Algebra
多时间结理论和量子代数
  • 批准号:
    RGPIN-2018-04350
  • 财政年份:
    2021
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Poly-Time Knot Theory and Quantum Algebra
多时间结理论和量子代数
  • 批准号:
    RGPIN-2018-04350
  • 财政年份:
    2020
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Poly-Time Knot Theory and Quantum Algebra
多时间结理论和量子代数
  • 批准号:
    RGPIN-2018-04350
  • 财政年份:
    2018
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Knot Theory, Algebra, and Higher Algebra
纽结理论、代数和高等代数
  • 批准号:
    262178-2013
  • 财政年份:
    2017
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Knot Theory, Algebra, and Higher Algebra
纽结理论、代数和高等代数
  • 批准号:
    262178-2013
  • 财政年份:
    2016
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Knot Theory, Algebra, and Higher Algebra
纽结理论、代数和高等代数
  • 批准号:
    262178-2013
  • 财政年份:
    2015
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Knot Theory, Algebra, and Higher Algebra
纽结理论、代数和高等代数
  • 批准号:
    262178-2013
  • 财政年份:
    2014
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Knot Theory, Algebra, and Higher Algebra
纽结理论、代数和高等代数
  • 批准号:
    262178-2013
  • 财政年份:
    2013
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Knot theory and algebra
纽结理论和代数
  • 批准号:
    262178-2008
  • 财政年份:
    2012
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

SERS探针诱导TAM重编程调控头颈鳞癌TIME的研究
  • 批准号:
    82360504
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
华蟾素调节PCSK9介导的胆固醇代谢重塑TIME增效aPD-L1治疗肝癌的作用机制研究
  • 批准号:
    82305023
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于MRI的机器学习模型预测直肠癌TIME中胶原蛋白水平及其对免疫T细胞调控作用的研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
结直肠癌TIME多模态分子影像分析结合深度学习实现疗效评估和预后预测
  • 批准号:
    62171167
  • 批准年份:
    2021
  • 资助金额:
    57 万元
  • 项目类别:
    面上项目
Time-lapse培养对人类胚胎植入前印记基因DNA甲基化的影响研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
萱草花开放时间(Flower Opening Time)的生物钟调控机制研究
  • 批准号:
    31971706
  • 批准年份:
    2019
  • 资助金额:
    59.0 万元
  • 项目类别:
    面上项目
Time-of-Flight深度相机多径干扰问题的研究
  • 批准号:
    61901435
  • 批准年份:
    2019
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
Finite-time Lyapunov 函数和耦合系统的稳定性分析
  • 批准号:
    11701533
  • 批准年份:
    2017
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
建筑工程计划中Time Buffer 的形成和分配 – 工程项目管理中的社会性研究
  • 批准号:
    71671098
  • 批准年份:
    2016
  • 资助金额:
    48.0 万元
  • 项目类别:
    面上项目
光学Parity-Time对称系统中破坏点的全光调控特性研究
  • 批准号:
    11504059
  • 批准年份:
    2015
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Studentship
CAREER: Real-Time First-Principles Approach to Understanding Many-Body Effects on High Harmonic Generation in Solids
职业:实时第一性原理方法来理解固体高次谐波产生的多体效应
  • 批准号:
    2337987
  • 财政年份:
    2024
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Continuing Grant
CAREER: Secure Miniaturized Bio-Electronic Sensors for Real-Time In-Body Monitoring
职业:用于实时体内监测的安全微型生物电子传感器
  • 批准号:
    2338792
  • 财政年份:
    2024
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Continuing Grant
Conference: Scientific Assessment of the McMurdo Dry Valleys Ecosystem: Environmental Stewardship in a Time of Dynamic Change
会议:麦克默多干谷生态系统的科学评估:动态变化时期的环境管理
  • 批准号:
    2409327
  • 财政年份:
    2024
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Standard Grant
NSF Convergence Accelerator Track L: Smartphone Time-Resolved Luminescence Imaging and Detection (STRIDE) for Point-of-Care Diagnostics
NSF 融合加速器轨道 L:用于即时诊断的智能手机时间分辨发光成像和检测 (STRIDE)
  • 批准号:
    2344476
  • 财政年份:
    2024
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Standard Grant
PZT-hydrogel integrated active non-Hermitian complementary acoustic metamaterials with real time modulations through feedback control circuits
PZT-水凝胶集成有源非厄米互补声学超材料,通过反馈控制电路进行实时调制
  • 批准号:
    2423820
  • 财政年份:
    2024
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Standard Grant
NSF Postdoctoral Fellowship in Biology: Investigating a Novel Circadian Time-Keeping Mechanism Revealed by Environmental Manipulation
美国国家科学基金会生物学博士后奖学金:研究环境操纵揭示的新型昼夜节律机制
  • 批准号:
    2305609
  • 财政年份:
    2024
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Fellowship Award
CAREER: Towards Safety-Critical Real-Time Systems with Learning Components
职业:迈向具有学习组件的安全关键实时系统
  • 批准号:
    2340171
  • 财政年份:
    2024
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Continuing Grant
CSR: Small: Multi-FPGA System for Real-time Fraud Detection with Large-scale Dynamic Graphs
CSR:小型:利用大规模动态图进行实时欺诈检测的多 FPGA 系统
  • 批准号:
    2317251
  • 财政年份:
    2024
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Standard Grant
Postdoctoral Fellowship: EAR-PF: Taxon-Specific Cross-Scale Responses to Aridity Gradients through Time and across Space in the NW Great Basin of the United States
博士后奖学金:EAR-PF:美国西北部大盆地随时间和空间的干旱梯度的分类单元特异性跨尺度响应
  • 批准号:
    2305325
  • 财政年份:
    2024
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Fellowship Award
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了