Problems in Randomized Algorithms, Random Graphs, and Computational Geometry
随机算法、随机图和计算几何中的问题
基本信息
- 批准号:RGPIN-2019-04269
- 负责人:
- 金额:$ 2.06万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2019
- 资助国家:加拿大
- 起止时间:2019-01-01 至 2020-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The overarching goal of my research program is to solve a number of long standing open problems in the intersection of theoretical computer science, graph theory, and probability theory. A commonality between the proposed topics is the use of probabilistic techniques. More precisely, my proposed research program focuses on the following areas.******(Objective 1) Randomized algorithms. Although counting the number of proper k-colourings of a graph is a computationally hard problem, Jerrum, Valiant, and Vazirani showed that a nearly uniform sampler gives rise to an approximate enumeration, motivating the question of finding an algorithm to efficiently generate uniformly random proper colourings of a graph; this is a central topic in both computer science and statistical physics. My colleagues and I made a recent breakthrough, the first progress on the most important question in this area in 19 years. My students and I will push this approach further, both working on the fundamental problem for Glauber dynamics and using similar techniques to bound the mixing time of other Markov chains as well.******(Objective 2) Random regular graphs. A question that has attracted much interest in graph theory is: under what conditions can we partition the edge set of a graph into edge disjoint copies of a subgraph? This is fundamentally related to some of the most notorious open areas of research such as finding orientations of certain types, nowhere-zero flows, and colourings of planar graphs. A key new insight is that moving long standing problems from structural graph theory to the random regular setting can provide additional machinery and help to shed light on classical, longstanding problems. For instance using probabilistic techniques, a coauthor and I recently showed that a random 4-regular graph has a decomposition into 3-stars asymptotically almost surely. An important line of research with far reaching applications is generalizing this result in various ways. My students and I will pursue developing methods for k-stars in d-regular random graphs as well as decompositions into other trees.******(Objective 3) Computational geometry. An active line of inquiry in combinatorics in recent years has been extending classical results to the so-called sparse random setting, where the goal is to show that certain known properties of “dense” combinatorial structures are inherited by their randomly chosen “sparse” substructures. In this spirit my team and I will develop an algorithmic approach that shows if a given algebraic hypergraph is “dense” in a certain sense, then a generic low-dimensional subset of the vertices induces a subhypergraph that is also “dense.” Such results have applications in computational geometry and matroid theory. My team and I will also establish a natural generalization of the classical dimension of fibers theorem in algebraic geometry, a result interesting in its own right.
我的研究计划的总体目标是解决一些长期存在的开放问题,在理论计算机科学,图论和概率论的交叉。所提议的主题之间的一个共同点是使用概率技术。具体来说,我的研究计划主要集中在以下几个方面:*(目标1)随机算法。虽然计算一个图的正确k-着色的数量是一个计算困难的问题,但Jerrum、Valiant和Vazirani证明了一个近似的采样器会产生一个近似的枚举,激发了寻找一个算法来有效地生成一个图的均匀随机正确着色的问题;这是计算机科学和统计物理学的中心话题。 我和我的同事们最近取得了突破,这是19年来在这一领域最重要的问题上取得的第一次进展。我和我的学生将进一步推动这种方法,既致力于Glauber动力学的基本问题,也使用类似的技术来约束其他马尔可夫链的混合时间。(目标2)随机正则图。图论中的一个问题是:在什么条件下可以将一个图的边集划分为若干个子图的边不相交的副本?这是从根本上与一些最臭名昭著的开放领域的研究,如寻找方向的某些类型,无处零流,和着色的平面图。一个关键的新见解是,将长期存在的问题从结构图论转移到随机规则设置可以提供额外的机制,并有助于阐明经典的长期存在的问题。 例如,使用概率技术,我和一位合著者最近证明了一个随机的4-正则图几乎肯定渐近地分解为3-星。具有深远应用的一个重要研究方向是以各种方式推广这一结果。 我和我的学生将继续研究d-正则随机图中k-星的开发方法,以及分解成其他树的方法。(目标3)计算几何学。近年来,组合学的一个活跃的研究方向是将经典结果扩展到所谓的稀疏随机设置,其目标是证明“密集”组合结构的某些已知性质可以由其随机选择的“稀疏”子结构继承。本着这种精神,我和我的团队将开发一种算法方法,该方法表明,如果给定的代数超图在某种意义上是“稠密的”,那么顶点的一般低维子集会导致子超图也是“稠密的”。这些结果在计算几何和拟阵理论中有应用。我和我的团队还将建立代数几何中经典的纤维维数定理的自然推广,这是一个有趣的结果。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Delcourt, Michelle其他文献
Independent sets in algebraic hypergraphs
代数超图中的独立集
- DOI:
10.4171/jems/1082 - 发表时间:
2022 - 期刊:
- 影响因子:2.6
- 作者:
Bernshteyn, Anton;Delcourt, Michelle;Tserunyan, Anush - 通讯作者:
Tserunyan, Anush
Generalized rainbow Turán numbers of odd cycles
奇数周期的广义彩虹图兰数
- DOI:
10.1016/j.disc.2021.112663 - 发表时间:
2022 - 期刊:
- 影响因子:0.8
- 作者:
Balogh, József;Delcourt, Michelle;Heath, Emily;Li, Lina - 通讯作者:
Li, Lina
Delcourt, Michelle的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Delcourt, Michelle', 18)}}的其他基金
Problems in Randomized Algorithms, Random Graphs, and Computational Geometry
随机算法、随机图和计算几何中的问题
- 批准号:
RGPIN-2019-04269 - 财政年份:2022
- 资助金额:
$ 2.06万 - 项目类别:
Discovery Grants Program - Individual
Problems in Randomized Algorithms, Random Graphs, and Computational Geometry
随机算法、随机图和计算几何中的问题
- 批准号:
RGPIN-2019-04269 - 财政年份:2021
- 资助金额:
$ 2.06万 - 项目类别:
Discovery Grants Program - Individual
Problems in Randomized Algorithms, Random Graphs, and Computational Geometry
随机算法、随机图和计算几何中的问题
- 批准号:
RGPIN-2019-04269 - 财政年份:2020
- 资助金额:
$ 2.06万 - 项目类别:
Discovery Grants Program - Individual
Problems in Randomized Algorithms, Random Graphs, and Computational Geometry
随机算法、随机图和计算几何中的问题
- 批准号:
DGECR-2019-00092 - 财政年份:2019
- 资助金额:
$ 2.06万 - 项目类别:
Discovery Launch Supplement
Problems in Randomized Algorithms, Random Graphs, and Computational Geometry
随机算法、随机图和计算几何中的问题
- 批准号:
RGPIN-2019-04269 - 财政年份:2019
- 资助金额:
$ 2.06万 - 项目类别:
Discovery Grants Program - Individual
相似海外基金
Problems in Randomized Algorithms, Random Graphs, and Computational Geometry
随机算法、随机图和计算几何中的问题
- 批准号:
RGPIN-2019-04269 - 财政年份:2022
- 资助金额:
$ 2.06万 - 项目类别:
Discovery Grants Program - Individual
Problems in Randomized Algorithms, Random Graphs, and Computational Geometry
随机算法、随机图和计算几何中的问题
- 批准号:
RGPIN-2019-04269 - 财政年份:2021
- 资助金额:
$ 2.06万 - 项目类别:
Discovery Grants Program - Individual
Problems in Randomized Algorithms, Random Graphs, and Computational Geometry
随机算法、随机图和计算几何中的问题
- 批准号:
RGPIN-2019-04269 - 财政年份:2020
- 资助金额:
$ 2.06万 - 项目类别:
Discovery Grants Program - Individual
Problems in Randomized Algorithms, Random Graphs, and Computational Geometry
随机算法、随机图和计算几何中的问题
- 批准号:
DGECR-2019-00092 - 财政年份:2019
- 资助金额:
$ 2.06万 - 项目类别:
Discovery Launch Supplement
Problems in Randomized Algorithms, Random Graphs, and Computational Geometry
随机算法、随机图和计算几何中的问题
- 批准号:
RGPIN-2019-04269 - 财政年份:2019
- 资助金额:
$ 2.06万 - 项目类别:
Discovery Grants Program - Individual
AF: Small: Fast and Efficient Randomized Algorithms for Solving Laplacian Systems of Linear Equations and Sparse Least Squares Problems
AF:小型:用于解决线性方程拉普拉斯系统和稀疏最小二乘问题的快速高效随机算法
- 批准号:
1016501 - 财政年份:2010
- 资助金额:
$ 2.06万 - 项目类别:
Standard Grant
Analyses of Randomized Algorithms for Constraint Satisfaction Problems
约束满足问题的随机算法分析
- 批准号:
13680400 - 财政年份:2001
- 资助金额:
$ 2.06万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Randomized approximation algorithms for combinatorial optimization problems
组合优化问题的随机逼近算法
- 批准号:
36809-1997 - 财政年份:2000
- 资助金额:
$ 2.06万 - 项目类别:
Discovery Grants Program - Individual
Randomized approximation algorithms for combinatorial optimization problems
组合优化问题的随机逼近算法
- 批准号:
36809-1997 - 财政年份:1999
- 资助金额:
$ 2.06万 - 项目类别:
Discovery Grants Program - Individual
Randomized approximation algorithms for combinatorial optimization problems
组合优化问题的随机逼近算法
- 批准号:
36809-1997 - 财政年份:1998
- 资助金额:
$ 2.06万 - 项目类别:
Discovery Grants Program - Individual