Next generation tools for modelling and analysis of evolving power and energy systems
用于对不断发展的电力和能源系统进行建模和分析的下一代工具
基本信息
- 批准号:RGPIN-2015-04151
- 负责人:
- 金额:$ 2.7万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2019
- 资助国家:加拿大
- 起止时间:2019-01-01 至 2020-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Electrical energy systems are fast evolving with rapidly increasing complexity, wider acceptance of DC-based technologies, and integration with communication systems and sensors. Sophisticated computer models are essential for operation of electric grids, planning purposes, design and integration of future renewable energy sources and systems. Thousands of engineers in control centers and research facilities around the world are working full-time developing models and conducting studies. Since the models are used by engineers and researchers many times (often iteratively during the design cycle), both the model accuracy and numerical efficiency (simulation time) are very important. Even a fractional increase in simulation speed will result in very significant savings of the engineering time worldwide. However, models of rotating machines and power electronic components are typically the limiting bottle-neck, and the present modeling tools are falling behind of the needs.***Canada has been a leader in developing the state-of-the-art solution approaches and computerized tools that enable design and operation of electric power systems of various scales. The electromagnetic transient programs (EMTP) e.g. ATP, Microtran, EMTP-RV, PSCAD, RTDS, RT-LAB, the Matlab's SimPowerSystems, and Powertech Labs transient stability tools DSATools, etc., all have been originated and/or developed by Canadian researches and are now overwhelmingly used throughout the world as industry-standard tools. The proposed research continues UBC's long-time tradition in advancing the power systems analysis tools. We are developing the most computationally efficient synchronous and induction machines models that achieve constant-parameter interfacing circuits (and constant conductance submatrices) and avoid the limitations and numerical instability of the traditional qd0-models. We are developing a revolutionary parametric approach for automatically constructing the dynamic average-value models of switching converters and machine-converter systems (with capability of including significant harmonics). The new/advanced models are best suited for future simulation environments that will allow intermixing EMTP-type, state-variable-based, and dynamic/static phasors solution approaches. The proposed research will enable the next generation of transient simulation tools with new capabilities and extended range of applications, capable of much faster simulations of large-scale systems and yet preserving high-level of detail and accuracy at the localized sub-systems as required. These tools will have a tremendous impact on how simulations are used by engineers and researchers in the near future. The results of this research are essential in enabling the new paradigms of AC/DC microgrids, alternative energy sources and storage, which together define the evolving future smart grid.
随着复杂性的迅速增加,基于直流技术的广泛接受以及与通信系统和传感器的集成,电能系统正在快速发展。复杂的计算机模型对于电网的运行、规划目的、未来可再生能源和系统的设计和集成至关重要。世界各地的控制中心和研究机构的数千名工程师正在全职开发模型和进行研究。由于模型被工程师和研究人员多次使用(通常在设计周期内迭代使用),因此模型的精度和数值效率(仿真时间)都非常重要。即使是模拟速度的一小部分提高,也会在全球范围内节省大量的工程时间。然而,旋转机械和电力电子元件的模型是典型的限制瓶颈,目前的建模工具落后于需求。***加拿大在开发最先进的解决方案方法和计算机化工具方面一直处于领先地位,这些工具使各种规模的电力系统的设计和运行成为可能。电磁瞬变程序(EMTP),例如ATP, Microtran, EMTP- rv, PSCAD, RTDS, RT-LAB, Matlab的SimPowerSystems和Powertech Labs瞬变稳定工具DSATools等,都是由加拿大研究人员发起和/或开发的,现在在世界各地作为行业标准工具被广泛使用。拟议的研究延续了UBC在推进电力系统分析工具方面的长期传统。我们正在开发计算效率最高的同步和感应电机模型,实现恒定参数接口电路(和恒定电导子矩阵),避免传统qd0模型的局限性和数值不稳定性。我们正在开发一种革命性的参数化方法,用于自动构建开关变换器和机器变换器系统的动态平均值模型(具有包含显著谐波的能力)。新的/先进的模型最适合未来的仿真环境,将允许混合emtp类型,基于状态变量和动态/静态相量解决方案方法。拟议的研究将使下一代瞬态仿真工具具有新的功能和扩展的应用范围,能够更快地模拟大规模系统,同时根据需要在局部子系统中保持高水平的细节和准确性。在不久的将来,这些工具将对工程师和研究人员如何使用模拟产生巨大影响。这项研究的结果对于实现交流/直流微电网、替代能源和存储的新范式至关重要,它们共同定义了不断发展的未来智能电网。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jatskevich, Juri其他文献
Filtering of Hall-Sensor Signals for Improved Operation of Brushless DC Motors
- DOI:
10.1109/tec.2011.2180171 - 发表时间:
2012-06-01 - 期刊:
- 影响因子:4.9
- 作者:
Alaeinovin, Pooya;Jatskevich, Juri - 通讯作者:
Jatskevich, Juri
Induction Machine Parameterization from Limited Transient Data using Convex Optimization
使用凸优化从有限瞬态数据进行感应电机参数化
- DOI:
10.1109/tie.2021.3060668 - 发表时间:
2021 - 期刊:
- 影响因子:7.7
- 作者:
Yadav, Ajay Pratap;Madani, Ramtin;Amiri, Navid;Jatskevich, Juri;Davoudi, Ali - 通讯作者:
Davoudi, Ali
Power quality control of wind-hybrid power generation system using fuzzy-LQR controller
- DOI:
10.1109/tec.2005.858092 - 发表时间:
2007-06-01 - 期刊:
- 影响因子:4.9
- 作者:
Ko, Hee-Sang;Jatskevich, Juri - 通讯作者:
Jatskevich, Juri
Fault Diagnosis and Signal Reconstruction of Hall Sensors in Brushless Permanent Magnet Motor Drives
- DOI:
10.1109/tec.2015.2459072 - 发表时间:
2016-03-01 - 期刊:
- 影响因子:4.9
- 作者:
Dong, Lianghui;Jatskevich, Juri;Liu, Jinglin - 通讯作者:
Liu, Jinglin
Dynamic performance of brushless DC motors with unbalanced hall sensors
- DOI:
10.1109/tec.2008.921555 - 发表时间:
2008-09-01 - 期刊:
- 影响因子:4.9
- 作者:
Samoylenko, Nikolay;Han, Qiang;Jatskevich, Juri - 通讯作者:
Jatskevich, Juri
Jatskevich, Juri的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jatskevich, Juri', 18)}}的其他基金
Advanced Tools for Modelling and Analysis of Evolving Power and Energy Systems
用于对不断发展的电力和能源系统进行建模和分析的高级工具
- 批准号:
RGPIN-2020-07083 - 财政年份:2022
- 资助金额:
$ 2.7万 - 项目类别:
Discovery Grants Program - Individual
Research and Development of Advanced Techniques for EMT Simulation of Modern Electrical Energy Systems
现代电能系统EMT仿真先进技术研究与开发
- 批准号:
543927-2019 - 财政年份:2021
- 资助金额:
$ 2.7万 - 项目类别:
Collaborative Research and Development Grants
Advanced Tools for Modelling and Analysis of Evolving Power and Energy Systems
用于对不断发展的电力和能源系统进行建模和分析的高级工具
- 批准号:
RGPIN-2020-07083 - 财政年份:2021
- 资助金额:
$ 2.7万 - 项目类别:
Discovery Grants Program - Individual
Research and Development of Advanced Techniques for EMT Simulation of Modern Electrical Energy Systems
现代电能系统EMT仿真先进技术研究与开发
- 批准号:
543927-2019 - 财政年份:2020
- 资助金额:
$ 2.7万 - 项目类别:
Collaborative Research and Development Grants
Advanced Tools for Modelling and Analysis of Evolving Power and Energy Systems
用于对不断发展的电力和能源系统进行建模和分析的高级工具
- 批准号:
RGPIN-2020-07083 - 财政年份:2020
- 资助金额:
$ 2.7万 - 项目类别:
Discovery Grants Program - Individual
Hardware and Software for Power-HIL Real-Time Simulation Platform for Integrated AC-DC Energy Systems
用于集成 AC-DC 能源系统的 Power-HIL 实时仿真平台的硬件和软件
- 批准号:
RTI-2020-00169 - 财政年份:2019
- 资助金额:
$ 2.7万 - 项目类别:
Research Tools and Instruments
Research and Development of Advanced Techniques for EMT Simulation of Modern Electrical Energy Systems
现代电能系统EMT仿真先进技术研究与开发
- 批准号:
543927-2019 - 财政年份:2019
- 资助金额:
$ 2.7万 - 项目类别:
Collaborative Research and Development Grants
Modeling and control of smart generation power systems**
智能发电电力系统的建模和控制**
- 批准号:
534236-2018 - 财政年份:2018
- 资助金额:
$ 2.7万 - 项目类别:
Engage Grants Program
Real-time Hardware-In-the-Loop Simulator for Integrated AC-DC Energy Systems of Buildings and Communities
适用于建筑物和社区集成交直流能源系统的实时硬件在环模拟器
- 批准号:
RTI-2019-00332 - 财政年份:2018
- 资助金额:
$ 2.7万 - 项目类别:
Research Tools and Instruments
Next generation tools for modelling and analysis of evolving power and energy systems
用于对不断发展的电力和能源系统进行建模和分析的下一代工具
- 批准号:
RGPIN-2015-04151 - 财政年份:2018
- 资助金额:
$ 2.7万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
细胞周期蛋白依赖性激酶Cdk1介导卵母细胞第一极体重吸收致三倍体发生的调控机制研究
- 批准号:82371660
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
Next Generation Majorana Nanowire Hybrids
- 批准号:
- 批准年份:2020
- 资助金额:20 万元
- 项目类别:
二次谐波非线性光学显微成像用于前列腺癌的诊断及药物疗效初探
- 批准号:30470495
- 批准年份:2004
- 资助金额:20.0 万元
- 项目类别:面上项目
相似海外基金
Next Generation Fluorescent Tools for Measuring Autophagy Dynamics in Cells
用于测量细胞自噬动态的下一代荧光工具
- 批准号:
DP240100465 - 财政年份:2024
- 资助金额:
$ 2.7万 - 项目类别:
Discovery Projects
Next Generation Tools For Genome-Centric Multimodal Data Integration In Personalised Cardiovascular Medicine
个性化心血管医学中以基因组为中心的多模式数据集成的下一代工具
- 批准号:
10104323 - 财政年份:2024
- 资助金额:
$ 2.7万 - 项目类别:
EU-Funded
NEXT GENERATION TOOLS FOR GENOME-CENTRIC MULTIMODAL DATA INTEGRATION IN PERSONALISED CARDIOVASCULAR MEDICINE
用于个性化心血管医学中以基因组为中心的多模式数据集成的下一代工具
- 批准号:
10098097 - 财政年份:2024
- 资助金额:
$ 2.7万 - 项目类别:
EU-Funded
Supercharging Wind Propulsion: Advancing Digital tools in maritime to deliver real world performance in a next generation Wind Propulsion Design
增压风力推进:推进海事领域的数字工具,在下一代风力推进设计中提供真实的性能
- 批准号:
10093454 - 财政年份:2024
- 资助金额:
$ 2.7万 - 项目类别:
Collaborative R&D
Building Tools to Create Molecular Complexity for Next Generation Drugs
构建为下一代药物创造分子复杂性的工具
- 批准号:
IM240100126 - 财政年份:2024
- 资助金额:
$ 2.7万 - 项目类别:
Mid-Career Industry Fellowships
Design and synthesis of a next generation glycobiology toolbox for cell surface labeling
用于细胞表面标记的下一代糖生物学工具箱的设计和合成
- 批准号:
10699270 - 财政年份:2023
- 资助金额:
$ 2.7万 - 项目类别:
Next generation massively multiplexed combinatorial genetic screens
下一代大规模多重组合遗传筛选
- 批准号:
10587354 - 财政年份:2023
- 资助金额:
$ 2.7万 - 项目类别:
Collaborative Research: Tools 4 Cells: Developing Next Generation Methods for Studying Cytoskeletal Factors in the Cell Nucleus
合作研究:工具 4 细胞:开发研究细胞核中细胞骨架因子的下一代方法
- 批准号:
2306188 - 财政年份:2023
- 资助金额:
$ 2.7万 - 项目类别:
Standard Grant
Collaborative Research: Tools 4 Cells: Developing Next Generation Methods for Studying Cytoskeletal Factors in the Cell Nucleus
合作研究:工具 4 细胞:开发研究细胞核中细胞骨架因子的下一代方法
- 批准号:
2306187 - 财政年份:2023
- 资助金额:
$ 2.7万 - 项目类别:
Standard Grant
AIVIS: Next Generation Vigilant Information Seeking Artificial Intelligence-based Clinical Decision Support for Sepsis
AIVIS:下一代警惕信息寻求基于人工智能的脓毒症临床决策支持
- 批准号:
10699457 - 财政年份:2023
- 资助金额:
$ 2.7万 - 项目类别: