Processes of Mathematical Cognition
数学认知过程
基本信息
- 批准号:RGPIN-2015-06720
- 负责人:
- 金额:$ 2.91万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2019
- 资助国家:加拿大
- 起止时间:2019-01-01 至 2020-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The success of Canada's rapidly evolving knowledge- and technology-based economies will depend increasingly upon the mathematical competence of its citizens. Numeracy may be more critical even than literacy in terms of socio-economic opportunities. At present, Canadians' basic mathematical skills are, on average, relatively weak compared to many countries. This motivates experimental research into the basic cognitive processes that underlie mathematical skills. Recent findings in both normal and impaired arithmetic development have identified susceptibility to memory interference (confusions of related information in memory) as a critical factor in individual differences in arithmetic learning. Understanding the interference process is central to understanding the nature and acquisition of arithmetic skills. Indeed, memory interference undoubtedly is the reason that the basic arithmetic facts are notoriously difficult to memorize. The purpose of my program of research is to develop a detailed theory and computer model of adults' memory systems for the fundamental arithmetic operations, including simple addition, subtraction, multiplication and division. These operations provide the conceptual foundations upon which higher-order mathematical skills are built. My research will investigate the organization of the component processes for elementary arithmetic memory and how these are related to the problem of interference. A detailed understanding of the mechanisms of interference as they are manifest in adults' arithmetic performance will shed light on ways to mitigate interference during learning. A unified theory of skilled memory for all four basic arithmetic operations is the ultimate goal of this research, and its realization will provide a scientific basis for understanding individual and cross-national differences in adults' numerical competencies.
加拿大迅速发展的以知识和技术为基础的经济的成功将越来越取决于其公民的数学能力。就社会经济机会而言,算术甚至可能比识字更重要。目前,与许多国家相比,加拿大人的基本数学技能相对较弱。这激发了对构成数学技能基础的基本认知过程的实验研究。最近对正常和受损算术发展的研究发现,对记忆干扰(记忆中相关信息的混淆)的敏感性是算术学习个体差异的关键因素。理解干扰过程是理解算术技能的本质和习得的核心。事实上,记忆干扰无疑是众所周知的基本算术事实难于记忆的原因。我的研究项目的目的是开发成人记忆系统的详细理论和计算机模型,用于基本的算术运算,包括简单的加法、减法、乘法和除法。这些运算提供了构建高阶数学技能的概念基础。我的研究将调查初级算术记忆的组成过程的组织,以及这些过程与干扰问题的关系。对成人算术表现中干扰机制的详细了解将有助于揭示在学习过程中减少干扰的方法。四种基本算术运算熟练记忆的统一理论是本研究的最终目标,它的实现将为理解成人数字能力的个体差异和跨国差异提供科学依据。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Campbell, Jamie其他文献
NALCN Dysfunction as a Cause of Disordered Respiratory Rhythm With Central Apnea
- DOI:
10.1542/peds.2017-0026 - 发表时间:
2018-04-01 - 期刊:
- 影响因子:8
- 作者:
Campbell, Jamie;FitzPatrick, David R.;Urquhart, Don S. - 通讯作者:
Urquhart, Don S.
In a Genomic Era, Placental Pathology Still Holds the Key in the Nondysmorphic Stillbirth
- DOI:
10.1177/1093526617733373 - 发表时间:
2018-05-01 - 期刊:
- 影响因子:1.9
- 作者:
Campbell, Jamie;Armstrong, Kristy;Evans, Margaret J. - 通讯作者:
Evans, Margaret J.
Normally Grown Non-dysmorphic Stillbirth Post 38 Weeks Gestation and Reduced Fetal Movements: A Matter of Reserve? A Retrospective Study
- DOI:
10.1007/s40556-019-00230-w - 发表时间:
2020-02-06 - 期刊:
- 影响因子:0.2
- 作者:
Campbell, Jamie;Evans, Margaret J. - 通讯作者:
Evans, Margaret J.
A role for fibroblast-derived SASP factors in the activation of pyroptotic cell death in mammary epithelial cells.
- DOI:
10.1016/j.jbc.2023.104922 - 发表时间:
2023-07 - 期刊:
- 影响因子:4.8
- 作者:
Hom, Lisa M.;Sun, Seunghoon;Campbell, Jamie;Liu, Pinyan;Culbert, Shannon;Murphy, Ireland M.;Schafer, Zachary T. - 通讯作者:
Schafer, Zachary T.
Evidence that identity-dependent and identity-independent neural populations are recruited in the perception of five basic emotional facial expressions
- DOI:
10.1016/j.visres.2009.03.009 - 发表时间:
2009-06-01 - 期刊:
- 影响因子:1.8
- 作者:
Campbell, Jamie;Burke, Darren - 通讯作者:
Burke, Darren
Campbell, Jamie的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Campbell, Jamie', 18)}}的其他基金
Associative Mechanisms of Cognitive Arithmetic
认知算术的联想机制
- 批准号:
RGPIN-2020-04005 - 财政年份:2022
- 资助金额:
$ 2.91万 - 项目类别:
Discovery Grants Program - Individual
Associative Mechanisms of Cognitive Arithmetic
认知算术的联想机制
- 批准号:
RGPIN-2020-04005 - 财政年份:2021
- 资助金额:
$ 2.91万 - 项目类别:
Discovery Grants Program - Individual
Associative Mechanisms of Cognitive Arithmetic
认知算术的联想机制
- 批准号:
RGPIN-2020-04005 - 财政年份:2020
- 资助金额:
$ 2.91万 - 项目类别:
Discovery Grants Program - Individual
Processes of Mathematical Cognition
数学认知过程
- 批准号:
RGPIN-2015-06720 - 财政年份:2018
- 资助金额:
$ 2.91万 - 项目类别:
Discovery Grants Program - Individual
Processes of Mathematical Cognition
数学认知过程
- 批准号:
RGPIN-2015-06720 - 财政年份:2017
- 资助金额:
$ 2.91万 - 项目类别:
Discovery Grants Program - Individual
Processes of Mathematical Cognition
数学认知过程
- 批准号:
RGPIN-2015-06720 - 财政年份:2016
- 资助金额:
$ 2.91万 - 项目类别:
Discovery Grants Program - Individual
Processes of Mathematical Cognition
数学认知过程
- 批准号:
RGPIN-2015-06720 - 财政年份:2015
- 资助金额:
$ 2.91万 - 项目类别:
Discovery Grants Program - Individual
Processes of mathematical cognition
数学认知过程
- 批准号:
105137-2010 - 财政年份:2014
- 资助金额:
$ 2.91万 - 项目类别:
Discovery Grants Program - Individual
Processes of mathematical cognition
数学认知过程
- 批准号:
105137-2010 - 财政年份:2013
- 资助金额:
$ 2.91万 - 项目类别:
Discovery Grants Program - Individual
Processes of mathematical cognition
数学认知过程
- 批准号:
105137-2010 - 财政年份:2012
- 资助金额:
$ 2.91万 - 项目类别:
Discovery Grants Program - Individual
相似海外基金
Processes of Mathematical Cognition
数学认知过程
- 批准号:
RGPIN-2015-06720 - 财政年份:2018
- 资助金额:
$ 2.91万 - 项目类别:
Discovery Grants Program - Individual
Strategic Processes in Mathematical Cognition
数学认知的策略过程
- 批准号:
524707-2018 - 财政年份:2018
- 资助金额:
$ 2.91万 - 项目类别:
University Undergraduate Student Research Awards
Processes of Mathematical Cognition
数学认知过程
- 批准号:
RGPIN-2015-06720 - 财政年份:2017
- 资助金额:
$ 2.91万 - 项目类别:
Discovery Grants Program - Individual
Processes of Mathematical Cognition
数学认知过程
- 批准号:
RGPIN-2015-06720 - 财政年份:2016
- 资助金额:
$ 2.91万 - 项目类别:
Discovery Grants Program - Individual
Processes of Mathematical Cognition
数学认知过程
- 批准号:
RGPIN-2015-06720 - 财政年份:2015
- 资助金额:
$ 2.91万 - 项目类别:
Discovery Grants Program - Individual
Processes of mathematical cognition
数学认知过程
- 批准号:
105137-2010 - 财政年份:2014
- 资助金额:
$ 2.91万 - 项目类别:
Discovery Grants Program - Individual
Processes of mathematical cognition
数学认知过程
- 批准号:
105137-2010 - 财政年份:2013
- 资助金额:
$ 2.91万 - 项目类别:
Discovery Grants Program - Individual
Processes of mathematical cognition
数学认知过程
- 批准号:
105137-2010 - 财政年份:2012
- 资助金额:
$ 2.91万 - 项目类别:
Discovery Grants Program - Individual
Processes of mathematical cognition
数学认知过程
- 批准号:
105137-2010 - 财政年份:2011
- 资助金额:
$ 2.91万 - 项目类别:
Discovery Grants Program - Individual
Processes of mathematical cognition
数学认知过程
- 批准号:
105137-2010 - 财政年份:2010
- 资助金额:
$ 2.91万 - 项目类别:
Discovery Grants Program - Individual