Probabilistic Models of Semantic and Pragmatic Acquisition and Processing
语义和语用获取和处理的概率模型
基本信息
- 批准号:RGPIN-2017-06506
- 负责人:
- 金额:$ 3.06万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2019
- 资助国家:加拿大
- 起止时间:2019-01-01 至 2020-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Despite tools such as Siri and Alexa which may suggest that the human-like systems in Her and Ex Machina are just around the corner realistic natural language interaction with a computer remains an elusive goal. Recent “big data” approaches can achieve impressive behaviours in text and speech processing, but human-like processing of language remains one of the grand challenges of artificial intelligence (AI). Capturing the complexity and extensibility of word meanings is a major obstacle to achieving that goal, yet humans learn word meanings and adapt them to new situations almost effortlessly. Only by modeling language abilities as a computational cognitive system can we hope to achieve human-like performance in future AI applications. The specific objective of this proposal is to devise state-of-the-art computational representations and algorithms that reflect leading-edge linguistic and psychological theories, with the goal of achieving human-like behaviour in representing, learning, and interpreting the meaning of words, leading to three related sets of research projects.******The first set of projects will contribute novel algorithms drawing on alignment and graph methods from natural language processing (NLP) that can efficiently yield crosslinguistic semantic data structures. We will demonstrate that these representations more accurately capture properties of human semantic knowledge, and can thus support improved automatic language analysis tools. The second set of projects will demonstrate the benefit of adapting state-of-the-art machine learning techniques to integrate cognitive influences on word learning. Such techniques will enable us to extend the scientific understanding of word learning to acquisition of structured and abstract meanings. Given their basis in leading-edge computer science approaches, these findings can inform NLP methods for extracting rich semantic relations and exploiting top-down and bottom-up information in acquiring meaning. Our third set of projects will extend the state-of-the-art in cognitive models of reference by integrating incremental probabilistic learning methods that reflect cognitive factors. By developing models that capture experimentally-demonstrated influences and that adapt over the course of a conversation, we will contribute to increased understanding of the factors that must be reflected in NLP systems to match human expectations in conversation. Overall, the projects here demonstrate the dual benefits of the multidisciplinary research program: Bringing advances in computer science to bear on improving our understanding of human cognition as a computational system, and informing NLP by adapting recent linguistic and psycholinguistic insights within a computational framework.
尽管Siri和Alexa等工具可能表明Her和Ex Machina中的类人系统即将到来,但与计算机进行逼真的自然语言交互仍然是一个难以捉摸的目标。最近的“大数据”方法可以在文本和语音处理中实现令人印象深刻的行为,但类似人类的语言处理仍然是人工智能(AI)的重大挑战之一。捕捉词义的复杂性和可扩展性是实现这一目标的主要障碍,但人类几乎毫不费力地学习词义并使其适应新的情况。只有将语言能力建模为计算认知系统,我们才有希望在未来的人工智能应用中实现类似人类的性能。该提案的具体目标是设计反映前沿语言学和心理学理论的最先进的计算表示和算法,目标是在表示,学习和解释单词的含义方面实现类似人类的行为,从而导致三组相关的研究项目。第一组项目将贡献基于自然语言处理(NLP)的对齐和图形方法的新算法,这些算法可以有效地产生跨语言语义数据结构。我们将证明,这些表示更准确地捕捉人类语义知识的属性,从而可以支持改进的自动语言分析工具。第二组项目将展示采用最先进的机器学习技术来整合认知对单词学习的影响的好处。这些技术将使我们能够扩展对单词学习的科学理解,以获得结构化和抽象的意义。鉴于它们在前沿计算机科学方法中的基础,这些发现可以为NLP方法提供信息,用于提取丰富的语义关系,并利用自上而下和自下而上的信息来获取意义。我们的第三组项目将通过整合反映认知因素的增量概率学习方法来扩展最先进的认知参考模型。通过开发捕捉实验证明的影响并在对话过程中适应的模型,我们将有助于增加对NLP系统中必须反映的因素的理解,以满足人类在对话中的期望。总的来说,这里的项目展示了多学科研究计划的双重好处:将计算机科学的进步用于提高我们对人类认知作为计算系统的理解,并通过在计算框架内调整最近的语言学和心理语言学见解来告知NLP。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Stevenson, Suzanne其他文献
A Probabilistic Computational Model of Cross-Situational Word Learning
- DOI:
10.1111/j.1551-6709.2010.01104.x - 发表时间:
2010-08-01 - 期刊:
- 影响因子:2.5
- 作者:
Fazly, Afsaneh;Alishahi, Afra;Stevenson, Suzanne - 通讯作者:
Stevenson, Suzanne
More Than the Eye Can See: A Computational Model of Color Term Acquisition and Color Discrimination
- DOI:
10.1111/cogs.12665 - 发表时间:
2018-11-01 - 期刊:
- 影响因子:2.5
- 作者:
Beekhuizen, Barend;Stevenson, Suzanne - 通讯作者:
Stevenson, Suzanne
Understanding the Use of the Term "Weaponized Autism" in An Alt-Right Social Media Platform.
- DOI:
10.1007/s10803-022-05701-0 - 发表时间:
2023-10 - 期刊:
- 影响因子:3.9
- 作者:
Welch, Christie;Senman, Lili;Loftin, Rachel;Picciolini, Christian;Robison, John;Westphal, Alexander;Perry, Barbara;Nguyen, Jenny;Jachyra, Patrick;Stevenson, Suzanne;Aggarwal, Jai;Wijekoon, Sachindri;Baron-Cohen, Simon;Penner, Melanie - 通讯作者:
Penner, Melanie
Perspective-taking behavior as the probabilistic weighing of multiple domains
- DOI:
10.1016/j.cognition.2015.12.008 - 发表时间:
2016-04-01 - 期刊:
- 影响因子:3.4
- 作者:
Heller, Daphna;Parisien, Christopher;Stevenson, Suzanne - 通讯作者:
Stevenson, Suzanne
Modeling Reference Production as the Probabilistic Combination of Multiple Perspectives
- DOI:
10.1111/cogs.12582 - 发表时间:
2018-06-01 - 期刊:
- 影响因子:2.5
- 作者:
Mozuraitis, Mindaugas;Stevenson, Suzanne;Heller, Daphna - 通讯作者:
Heller, Daphna
Stevenson, Suzanne的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Stevenson, Suzanne', 18)}}的其他基金
Probabilistic Models of Semantic and Pragmatic Acquisition and Processing
语义和语用获取和处理的概率模型
- 批准号:
RGPIN-2017-06506 - 财政年份:2021
- 资助金额:
$ 3.06万 - 项目类别:
Discovery Grants Program - Individual
Probabilistic Models of Semantic and Pragmatic Acquisition and Processing
语义和语用获取和处理的概率模型
- 批准号:
RGPIN-2017-06506 - 财政年份:2020
- 资助金额:
$ 3.06万 - 项目类别:
Discovery Grants Program - Individual
Probabilistic Models of Semantic and Pragmatic Acquisition and Processing
语义和语用获取和处理的概率模型
- 批准号:
RGPIN-2017-06506 - 财政年份:2018
- 资助金额:
$ 3.06万 - 项目类别:
Discovery Grants Program - Individual
Probabilistic Models of Semantic and Pragmatic Acquisition and Processing
语义和语用获取和处理的概率模型
- 批准号:
RGPIN-2017-06506 - 财政年份:2017
- 资助金额:
$ 3.06万 - 项目类别:
Discovery Grants Program - Individual
Probabilistic Approaches to Learning the Semantics and Syntax of Words
学习单词语义和句法的概率方法
- 批准号:
227787-2012 - 财政年份:2015
- 资助金额:
$ 3.06万 - 项目类别:
Discovery Grants Program - Individual
Refining learner knowledge and responses through a coadaptive tutoring system
通过自适应辅导系统完善学习者的知识和反应
- 批准号:
485376-2015 - 财政年份:2015
- 资助金额:
$ 3.06万 - 项目类别:
Engage Grants Program
Probabilistic Approaches to Learning the Semantics and Syntax of Words
学习单词语义和句法的概率方法
- 批准号:
429605-2012 - 财政年份:2014
- 资助金额:
$ 3.06万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Probabilistic Approaches to Learning the Semantics and Syntax of Words
学习单词语义和句法的概率方法
- 批准号:
227787-2012 - 财政年份:2014
- 资助金额:
$ 3.06万 - 项目类别:
Discovery Grants Program - Individual
Probabilistic Approaches to Learning the Semantics and Syntax of Words
学习单词语义和句法的概率方法
- 批准号:
227787-2012 - 财政年份:2013
- 资助金额:
$ 3.06万 - 项目类别:
Discovery Grants Program - Individual
Probabilistic Approaches to Learning the Semantics and Syntax of Words
学习单词语义和句法的概率方法
- 批准号:
429605-2012 - 财政年份:2013
- 资助金额:
$ 3.06万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
新型手性NAD(P)H Models合成及生化模拟
- 批准号:20472090
- 批准年份:2004
- 资助金额:23.0 万元
- 项目类别:面上项目
相似海外基金
RI: Small: Semantic 3D Neural Rendering Field Models that are Accurate, Complete, Flexible, and Scalable
RI:小型:准确、完整、灵活且可扩展的语义 3D 神经渲染场模型
- 批准号:
2312102 - 财政年份:2023
- 资助金额:
$ 3.06万 - 项目类别:
Continuing Grant
CompCog: RI: Small: Human-like semantic grammar induction through knowledge distillation from pre-trained language models
CompCog:RI:Small:通过预训练语言模型的知识蒸馏进行类人语义语法归纳
- 批准号:
2313140 - 财政年份:2023
- 资助金额:
$ 3.06万 - 项目类别:
Standard Grant
Semantic Differencing of Domain-Specific Models
特定领域模型的语义区分
- 批准号:
2886247 - 财政年份:2023
- 资助金额:
$ 3.06万 - 项目类别:
Studentship
CAREER: Inferring Minimal but Sufficient Environment Models from Natural Language and Semantic Perception for Collaborative Robots in Dynamic Environments
职业:从动态环境中的协作机器人的自然语言和语义感知推断最小但足够的环境模型
- 批准号:
2144804 - 财政年份:2022
- 资助金额:
$ 3.06万 - 项目类别:
Continuing Grant
Probabilistic Models of Semantic and Pragmatic Acquisition and Processing
语义和语用获取和处理的概率模型
- 批准号:
RGPIN-2017-06506 - 财政年份:2021
- 资助金额:
$ 3.06万 - 项目类别:
Discovery Grants Program - Individual
Probabilistic Models of Semantic and Pragmatic Acquisition and Processing
语义和语用获取和处理的概率模型
- 批准号:
RGPIN-2017-06506 - 财政年份:2020
- 资助金额:
$ 3.06万 - 项目类别:
Discovery Grants Program - Individual
Judgment and decision making from biased semantic models
根据有偏差的语义模型进行判断和决策
- 批准号:
541797-2019 - 财政年份:2019
- 资助金额:
$ 3.06万 - 项目类别:
University Undergraduate Student Research Awards
Developing Quantitative Probabilistic Decision-Support Tools for Bridge Management Using Coupled Semantic - Bayesian Models
使用耦合语义 - 贝叶斯模型开发桥梁管理的定量概率决策支持工具
- 批准号:
543232-2019 - 财政年份:2019
- 资助金额:
$ 3.06万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Probabilistic Models of Semantic and Pragmatic Acquisition and Processing
语义和语用获取和处理的概率模型
- 批准号:
RGPIN-2017-06506 - 财政年份:2018
- 资助金额:
$ 3.06万 - 项目类别:
Discovery Grants Program - Individual
RI: Small:Comp Cog: Broad-coverage semantic models of human sentence processing
RI:Small:Comp Cog:人类句子处理的广泛覆盖语义模型
- 批准号:
1816891 - 财政年份:2018
- 资助金额:
$ 3.06万 - 项目类别:
Standard Grant