The complexity of the constraint satisfaction problem and its variants
约束满足问题及其变体的复杂性
基本信息
- 批准号:RGPIN-2015-04656
- 负责人:
- 金额:$ 3.13万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2019
- 资助国家:加拿大
- 起止时间:2019-01-01 至 2020-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The constraint satisfaction problem (CSP) provides a general framework in which it is possible to express, in a natural way, a wide variety of problems. The aim in a CSP is to find an assignment of values to a given set of variables, subject to constraints on the values which can be simultaneously assigned to certain specified subsets of variables; in the counting constraint satisfaction problem the objective is to find the number of such assignments. The CSP is therefore very important in a number of applications, both theoretical and practical. In theoretical applications we look for new algorithmic ideas that can help to solve problems that could not be solved before, to improve the existing algorithms, to design more general and uniform algorithms, and to find evidence that certain problems are not efficiently solvable in the general case. In practical applications, constraint and satisfiability solvers are now standard tools in a wide range of areas from scheduling to hardware verification. Advances in the study of the CSP will speed up such solvers and expand their area of applicability.*** This project will contribute in both aspects of constraint problems, although its main focus is on the theoretical side. One of its main goals is to precisely understand which CSPs can be solved efficiently and design an efficient solution algorithm. This is one of the long standing open problems in computer science, but there is evidence that we may be approaching its resolution. Another component of the project is the study of counting constraint satisfaction problems. This area has unlikely connections to statistical physics, where such numbers affect the properties of large ensembles of particle, and, in particular, help to locate phase transition thresholds, at which, for instance, liquid turns to gas. Finally, this project proposes to study the efficiency and to design new algorithms in the framework that is closer to practical circumstances than the standard worst case approach. It is known that practical problems tend to have a certain property called the power law distribution, and we plan to mathematically study the behaviour of various algorithms on instance of the CSP satisfying this property.**
约束满意度问题(CSP)提供了一个一般框架,在这种框架中,可以自然地表达各种各样的问题。 CSP的目的是找到对给定变量集的值的分配,这要受到可以简单地将其分配给某些指定变量指定子集的值的约束;在计数约束满意度问题中,目标是找到此类作业的数量。因此,在实际应用中,CSP非常重要,限制和满意度求解器现在是从计划到硬件验证的广泛领域的标准工具。对CSP的研究进展将加快此类求解器并扩大其适用性。***该项目将在约束问题的两个方面做出贡献,尽管其主要重点是理论方面。它的主要目标之一是精确了解哪些CSP可以有效地解决并设计有效的解决方案算法。这是计算机科学中长期存在的开放问题之一,但是有证据表明我们可能正在解决其解决方案。该项目的另一个组成部分是计算约束满意度问题的研究。该区域与统计物理学有不可能的连接,在这种情况下,这种数字会影响粒子大体组合的特性,尤其是有助于定位相变阈值,例如,液体转向气体。最后,该项目的建议是研究效率并设计新算法的框架中,该算法比标准最坏情况的方法更接近实际情况。众所周知,实际问题倾向于具有某种称为权力法分配的特性,我们计划以满足此属性的CSP来数学研究各种算法的行为。**
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bulatov, Andrei其他文献
Minimal Taylor Algebras as a Common Framework for the Three Algebraic Approaches to the CSP
最小泰勒代数作为 CSP 三种代数方法的通用框架
- DOI:
10.1109/lics52264.2021.9470557 - 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Barto, Libor;Brady, Zarathustra;Bulatov, Andrei;Kozik, Marcin;Zhuk, Dmitriy - 通讯作者:
Zhuk, Dmitriy
THE SUBPOWER MEMBERSHIP PROBLEM FOR FINITE ALGEBRAS WITH CUBE TERMS
- DOI:
10.23638/lmcs-15(1:11)2019 - 发表时间:
2019-01-01 - 期刊:
- 影响因子:0.6
- 作者:
Bulatov, Andrei;Mayr, Peter;Szendrei, Agnes - 通讯作者:
Szendrei, Agnes
Bulatov, Andrei的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bulatov, Andrei', 18)}}的其他基金
Applications of algebraic methods in combinatorial problems
代数方法在组合问题中的应用
- 批准号:
RGPIN-2020-05481 - 财政年份:2022
- 资助金额:
$ 3.13万 - 项目类别:
Discovery Grants Program - Individual
Applications of algebraic methods in combinatorial problems
代数方法在组合问题中的应用
- 批准号:
RGPIN-2020-05481 - 财政年份:2021
- 资助金额:
$ 3.13万 - 项目类别:
Discovery Grants Program - Individual
Applications of algebraic methods in combinatorial problems
代数方法在组合问题中的应用
- 批准号:
RGPIN-2020-05481 - 财政年份:2020
- 资助金额:
$ 3.13万 - 项目类别:
Discovery Grants Program - Individual
The complexity of the constraint satisfaction problem and its variants
约束满足问题及其变体的复杂性
- 批准号:
RGPIN-2015-04656 - 财政年份:2018
- 资助金额:
$ 3.13万 - 项目类别:
Discovery Grants Program - Individual
The complexity of the constraint satisfaction problem and its variants
约束满足问题及其变体的复杂性
- 批准号:
RGPIN-2015-04656 - 财政年份:2017
- 资助金额:
$ 3.13万 - 项目类别:
Discovery Grants Program - Individual
The complexity of the constraint satisfaction problem and its variants
约束满足问题及其变体的复杂性
- 批准号:
RGPIN-2015-04656 - 财政年份:2016
- 资助金额:
$ 3.13万 - 项目类别:
Discovery Grants Program - Individual
The complexity of the constraint satisfaction problem and its variants
约束满足问题及其变体的复杂性
- 批准号:
RGPIN-2015-04656 - 财政年份:2015
- 资助金额:
$ 3.13万 - 项目类别:
Discovery Grants Program - Individual
Algorithms and complexity of the constraint satisfaction problem
约束满足问题的算法和复杂度
- 批准号:
313357-2010 - 财政年份:2014
- 资助金额:
$ 3.13万 - 项目类别:
Discovery Grants Program - Individual
Algorithms and complexity of the constraint satisfaction problem
约束满足问题的算法和复杂度
- 批准号:
313357-2010 - 财政年份:2013
- 资助金额:
$ 3.13万 - 项目类别:
Discovery Grants Program - Individual
Algorithms and complexity of the constraint satisfaction problem
约束满足问题的算法和复杂度
- 批准号:
313357-2010 - 财政年份:2012
- 资助金额:
$ 3.13万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
面向卫星重力数据反演高精度地表质量变化模型的约束模型构建及优化
- 批准号:42304097
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
高维结构约束的光场视频稀疏模型压缩理论与方法
- 批准号:62371278
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于观测和CMIP6/LUMIP试验的毁林/造林生物物理效应模拟评估和约束研究
- 批准号:42375115
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
气候变化与地下水枯竭双重约束下我国作物种植结构逐层优化研究
- 批准号:42307589
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
过约束对少自由度并联机构力学性能的影响机理及评价指标研究
- 批准号:52365004
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
相似海外基金
Promise Constraint Satisfaction Problem: Structure and Complexity
承诺约束满足问题:结构和复杂性
- 批准号:
EP/X033201/1 - 财政年份:2024
- 资助金额:
$ 3.13万 - 项目类别:
Fellowship
AF: Small: Streaming Complexity of Constraint Satisfaction Problems
AF:小:约束满足问题的流复杂性
- 批准号:
2152413 - 财政年份:2022
- 资助金额:
$ 3.13万 - 项目类别:
Standard Grant
Refined complexity of constraint satisfaction problems
约束满足问题的精细化复杂性
- 批准号:
RGPIN-2017-05107 - 财政年份:2021
- 资助金额:
$ 3.13万 - 项目类别:
Discovery Grants Program - Individual
Refined complexity of constraint satisfaction problems
约束满足问题的精细化复杂性
- 批准号:
RGPIN-2017-05107 - 财政年份:2020
- 资助金额:
$ 3.13万 - 项目类别:
Discovery Grants Program - Individual
Refined complexity of constraint satisfaction problems
约束满足问题的精细化复杂性
- 批准号:
RGPIN-2017-05107 - 财政年份:2019
- 资助金额:
$ 3.13万 - 项目类别:
Discovery Grants Program - Individual