Examining the Interactions and Dependencies between Active Vision and Reasoning
检查主动视觉和推理之间的相互作用和依赖性
基本信息
- 批准号:RGPIN-2016-05352
- 负责人:
- 金额:$ 4.59万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2019
- 资助国家:加拿大
- 起止时间:2019-01-01 至 2020-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The successes of machine learning methods, such as those found in Deep Learning Neural Networks, have transformed computational vision and Artificial Intelligence (AI). Although exciting, in a robotic context, there seems to be uncertainty about how these methods apply. At the 2015 Int. Conf. on Robotics and Automation (ICRA), two presentations emphasize this. D. Rus's (MIT) plenary keynote stressed that "robots can't figure things out": they cannot reason about their circumstances and tasks. G. Hager (Johns Hopkins U), introducing his Workshop on Robotic Vision, highlighted the need for robotic sensing systems to exploit attention and context, key elements for "figuring things out". Perhaps something more is needed.***The long-term goal of my research program is to use the language of computation to develop and formalize theories of human vision and visual cognition that have predictive power, thus furthering vision science, and use these to inform the engineering (and not necessarily mimic) of practical robot and machine vision systems. Within this context, the current proposal focuses on how active vision and reasoning strategies may be coupled in order to develop effective active reasoning methods. Our research plan proposes bridging the needs of inference mechanisms to the capabilities of active perception, with a perspective on machine vision that is strongly motivated by a modern understanding of human visual neurobiology. It is our hypothesis that the visual algorithms must be tunable to the input, environment and task of the moment, in a dynamic fashion, in order to enable a system to capture the generality seen in human vision. The goal is to develop computer vision algorithms and demonstrate their performance, testing this basic hypothesis, but being grounded in the robotic perception needs of autonomous companion robots for home, for the elderly, and for the infirm.***The importance of advanced robotics research to Canada is easy to demonstrate; NSERC has invested in the Strategic Network for Field Robotics, of which I am a co-PI (PI: G. Dudek). That network addresses both basic research into robotics as well as applications across a wide variety of domains covering terrestrial, airborne, water-based robots for natural resources, health, security and more. Even with this large effort, there are aspects of robotics and robotic perception not covered; this proposal addresses one of those needs. Robots should understand their environment and circumstances, be able to reason about how to perform their tasks, the effects and impacts of their actions, and be able to determine when their actions may not be correct and develop better plans for achieving their tasks. These seem critical not only for achieving robustness in applications in natural resources and manufacturing, but also safety and human-like behaviour for companion robots in the home and for the elderly.**
机器学习方法的成功,如深度学习神经网络中的方法,已经改变了计算视觉和人工智能(AI)。尽管令人兴奋,但在机器人环境中,这些方法如何应用似乎存在不确定性。在2015国际展会上电话会议关于机器人和自动化(ICRA),有两个演讲强调了这一点。麻省理工学院(MIT)全体会议的主旨演讲强调,“机器人不能解决问题”:它们不能对自己所处的环境和任务进行推理。G.Hager(Johns Hopkins U)在介绍他的机器人视觉研讨会时,强调了机器人传感系统利用注意力和背景的必要性,这是“弄清楚事情”的关键要素。也许还需要更多的东西。*我的研究计划的长期目标是使用计算语言来开发和形式化具有预测能力的人类视觉和视觉认知理论,从而促进视觉科学,并使用这些理论来为实际机器人和机器视觉系统的工程(不一定是模仿)提供信息。在这一背景下,目前的建议集中在如何将主动视觉和推理策略结合起来,以开发有效的主动推理方法。我们的研究计划建议将推理机制的需求与主动感知能力联系起来,从机器视觉的角度来看,机器视觉的强烈动机是对人类视觉神经生物学的现代理解。我们的假设是,视觉算法必须以动态的方式根据输入、环境和任务进行调整,以便使系统能够捕获人类视觉中看到的共性。目标是开发计算机视觉算法并展示它们的性能,测试这一基本假设,但立足于家庭、老年人和体弱者对自主同伴机器人的机器人感知需求。*高级机器人研究对加拿大的重要性很容易证明;NSERC投资了野战机器人战略网络,我是该网络的联合成员(PI:G.Dudek)。该网络既涉及对机器人的基础研究,也涉及广泛领域的应用,涵盖陆地、空中和水基机器人,用于自然资源、健康、安全等。即使做出了这样大的努力,机器人技术和机器人感知的一些方面也没有涵盖;这项提案解决了其中一个需求。机器人应该了解他们的环境和情况,能够推理如何执行他们的任务,他们的行动的效果和影响,并能够确定他们的行动可能不正确的时候,并制定更好的计划来完成他们的任务。这些似乎不仅对于在自然资源和制造业中实现应用的健壮性至关重要,而且对于家庭和老年人的同伴机器人的安全性和类似人类的行为也至关重要。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tsotsos, John其他文献
Tsotsos, John的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tsotsos, John', 18)}}的其他基金
Towards Understanding How Active Observers Solve Visuospatial Tasks
理解主动观察者如何解决视觉空间任务
- 批准号:
DGDND-2022-04606 - 财政年份:2022
- 资助金额:
$ 4.59万 - 项目类别:
DND/NSERC Discovery Grant Supplement
Towards Understanding How Active Observers Solve Visuospatial Tasks
理解主动观察者如何解决视觉空间任务
- 批准号:
RGPIN-2022-04606 - 财政年份:2022
- 资助金额:
$ 4.59万 - 项目类别:
Discovery Grants Program - Individual
Examining the Interactions and Dependencies between Active Vision and Reasoning
检查主动视觉和推理之间的相互作用和依赖性
- 批准号:
RGPIN-2016-05352 - 财政年份:2021
- 资助金额:
$ 4.59万 - 项目类别:
Discovery Grants Program - Individual
Examining the Interactions and Dependencies between Active Vision and Reasoning
检查主动视觉和推理之间的相互作用和依赖性
- 批准号:
RGPIN-2016-05352 - 财政年份:2020
- 资助金额:
$ 4.59万 - 项目类别:
Discovery Grants Program - Individual
Examining the Interactions and Dependencies between Active Vision and Reasoning
检查主动视觉和推理之间的相互作用和依赖性
- 批准号:
RGPIN-2016-05352 - 财政年份:2018
- 资助金额:
$ 4.59万 - 项目类别:
Discovery Grants Program - Individual
相似海外基金
Interactions of Human and Machine Intelligence in Modern Economic Systems
现代经济系统中人与机器智能的相互作用
- 批准号:
DP240100506 - 财政年份:2024
- 资助金额:
$ 4.59万 - 项目类别:
Discovery Projects
Developing functionalised electrospun scaffolds to exploit neural stromal interactions in wound healing
开发功能化电纺支架以利用神经基质相互作用促进伤口愈合
- 批准号:
2910663 - 财政年份:2024
- 资助金额:
$ 4.59万 - 项目类别:
Studentship
Understanding Material Interactions and Effects on Polymicrobial Communities at Surfaces
了解材料相互作用和对表面多种微生物群落的影响
- 批准号:
BB/Y512412/1 - 财政年份:2024
- 资助金额:
$ 4.59万 - 项目类别:
Training Grant
AI-PigNet: The AI of social interactions for next gen smart animal breeding
AI-PigNet:下一代智能动物饲养的社交互动人工智能
- 批准号:
BB/Y513891/1 - 财政年份:2024
- 资助金额:
$ 4.59万 - 项目类别:
Research Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 4.59万 - 项目类别:
Standard Grant
CAREER: Game Theoretic Models for Robust Cyber-Physical Interactions: Inference and Design under Uncertainty
职业:稳健的网络物理交互的博弈论模型:不确定性下的推理和设计
- 批准号:
2336840 - 财政年份:2024
- 资助金额:
$ 4.59万 - 项目类别:
Continuing Grant
CAREER: Modeling and Decoding Host-Microbiome Interactions in Gingival Tissue
职业:建模和解码牙龈组织中宿主-微生物组的相互作用
- 批准号:
2337322 - 财政年份:2024
- 资助金额:
$ 4.59万 - 项目类别:
Continuing Grant
CAREER: Leveraging Plastic Deformation Mechanisms Interactions in Metallic Materials to Access Extraordinary Fatigue Strength.
职业:利用金属材料中的塑性变形机制相互作用来获得非凡的疲劳强度。
- 批准号:
2338346 - 财政年份:2024
- 资助金额:
$ 4.59万 - 项目类别:
Continuing Grant
RUI: Investigating the Covalency of Intermolecular Interactions and its Effect on the Properties of Supramolecular Complexes.
RUI:研究分子间相互作用的共价性及其对超分子复合物性质的影响。
- 批准号:
2404011 - 财政年份:2024
- 资助金额:
$ 4.59万 - 项目类别:
Standard Grant
CAREER: Impact of MRI contrast agent design on nanoscale interactions with neutrophils and platelets
职业:MRI 造影剂设计对中性粒细胞和血小板纳米级相互作用的影响
- 批准号:
2339015 - 财政年份:2024
- 资助金额:
$ 4.59万 - 项目类别:
Standard Grant