Development of machine learning techniques for accessible and inexpensive imaging of COVID-19 with ultrasound

开发机器学习技术,通过超声对 COVID-19 进行便捷且廉价的成像

基本信息

  • 批准号:
    552686-2020
  • 负责人:
  • 金额:
    $ 3.64万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Alliance Grants
  • 财政年份:
    2020
  • 资助国家:
    加拿大
  • 起止时间:
    2020-01-01 至 2021-12-31
  • 项目状态:
    已结题

项目摘要

Recent papers from Emergency Room (ER) researchers in Italy and China has shown several advantages of imaging the lungs with ultrasound instead of the current practice of using Computed Tomography (CT) or chest X-ray. These papers showed that COVID-19 infection can be detected using B-lines, horizontal lines in the ultrasound image that are created because of the COVID-19 infection. Clarius ultrasound devices can be used as inexpensive screening tools in COVID-19 test-pods, for pre-triage, and in bedside for monitoring patients. They can also be used for imaging pregnant women who cannot undergo CT or X-ray imaging due to radiation exposure. Finally, Clarius ultrasound devices are more than 200 times less expensive than CT scanners, which can substantially save healthcare costs. Despite these attractive features, ultrasound remains user-dependent, and requires a skilled sonographer to collect high-quality images. In addition, detecting B-lines in ultrasound images entails careful inspection of images by an expert sonographer, which further limits accessibility of this screening tool. Given the current shortage of medical professionals at ERs, this partnership has two goals to address these issues: 1. Simplify image collection by automatically selecting the best ultrasound image as a novice user moves and rotates the probe on the chest wall. 2. Simplify interpretation of images by automatically detecting and localize B-lines in the best frame. In close collaboration with Clarius, we will develop novel Neural Networks (NN) that address these problems. We will fabricate phantoms that mimic healthy and infected lungs to train and test our NN. We will exploit latest advances in machine learning to develop NNs that work for unseen data from different patients with different image settings.
来自意大利和中国急诊室(ER)研究人员的最新论文显示了使用超声对肺部成像的几个优势,而不是目前使用计算机断层扫描(CT)或胸部X射线的做法。这些论文表明,COVID-19感染可以使用B线检测,B线是由于COVID-19感染而产生的超声图像中的水平线。 Clarius超声设备可用作COVID-19测试舱中的廉价筛查工具,用于预分类,并用于床边监测患者。它们也可用于因辐射暴露而无法接受CT或X射线成像的孕妇成像。最后,Clarius超声设备比CT扫描仪便宜200倍以上,可以大幅节省医疗成本。 尽管有这些有吸引力的功能,超声仍然依赖于用户,并需要一个熟练的声谱仪收集高质量的图像。此外,检测超声图像中的B线需要由专家声谱仪仔细检查图像,这进一步限制了该筛查工具的可访问性。鉴于急诊室目前缺乏医疗专业人员,这种伙伴关系有两个目标来解决这些问题: 1.当新手用户在胸壁上移动和旋转探头时,通过自动选择最佳超声图像来优化图像收集。 2.通过在最佳帧中自动检测和定位B线,实现图像的快速解释。 通过与Clarius的密切合作,我们将开发新的神经网络(NN)来解决这些问题。我们将制造模拟健康和受感染肺部的幻影来训练和测试我们的神经网络。我们将利用机器学习的最新进展来开发NN,这些NN适用于来自不同患者的具有不同图像设置的不可见数据。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Rivaz, Hassan其他文献

Ultrasonography of multifidus muscle morphology and function in ice hockey players with and without low back pain
  • DOI:
    10.1016/j.ptsp.2019.03.004
  • 发表时间:
    2019-05-01
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Fortin, Maryse;Rizk, Amanda;Rivaz, Hassan
  • 通讯作者:
    Rivaz, Hassan
Deformable registration of preoperative MR, pre-resection ultrasound, and post-resection ultrasound images of neurosurgery
Global Ultrasound Elastography in Spatial and Temporal Domains
Combining Total Variation Regularization with Window-Based Time Delay Estimation in Ultrasound Elastography
  • DOI:
    10.1109/tmi.2019.2913194
  • 发表时间:
    2019-12-01
  • 期刊:
  • 影响因子:
    10.6
  • 作者:
    Mirzaei, Morteza;Asif, Amir;Rivaz, Hassan
  • 通讯作者:
    Rivaz, Hassan
Plane-Wave Ultrasound Beamforming Through Independent Component Analysis

Rivaz, Hassan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Rivaz, Hassan', 18)}}的其他基金

Making Sense of the Data Trove Hidden in Medical Ultrasound Signals
理解隐藏在医学超声信号中的数据宝库
  • 批准号:
    RGPIN-2020-04612
  • 财政年份:
    2022
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Discovery Grants Program - Individual
Development of novel machine learning algorithms for registration of point clouds and tracking surgical tools
开发用于点云配准和跟踪手术工具的新型机器学习算法
  • 批准号:
    566675-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Alliance Grants
Making Sense of the Data Trove Hidden in Medical Ultrasound Signals
理解隐藏在医学超声信号中的数据宝库
  • 批准号:
    RGPIN-2020-04612
  • 财政年份:
    2021
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Discovery Grants Program - Individual
Making Sense of the Data Trove Hidden in Medical Ultrasound Signals
理解隐藏在医学超声信号中的数据宝库
  • 批准号:
    RGPIN-2020-04612
  • 财政年份:
    2020
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Discovery Grants Program - Individual
Development of novel techniques for tracking surgical tools
开发追踪手术工具的新技术
  • 批准号:
    549831-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Alliance Grants
Estimation of tissue deformation in medical images
医学图像中组织变形的估计
  • 批准号:
    RGPIN-2015-04136
  • 财政年份:
    2019
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Discovery Grants Program - Individual
Estimation of tissue deformation in medical images
医学图像中组织变形的估计
  • 批准号:
    RGPIN-2015-04136
  • 财政年份:
    2018
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Discovery Grants Program - Individual
Estimation of tissue deformation in medical images
医学图像中组织变形的估计
  • 批准号:
    RGPIN-2015-04136
  • 财政年份:
    2017
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Discovery Grants Program - Individual
Estimation of tissue deformation in medical images
医学图像中组织变形的估计
  • 批准号:
    RGPIN-2015-04136
  • 财政年份:
    2016
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Discovery Grants Program - Individual
Automatic rigid registration of ultrasound and CT for guiding intervention of the vertebral column
超声和CT自动刚性配准,指导脊柱干预
  • 批准号:
    506174-2016
  • 财政年份:
    2016
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Engage Grants Program

相似国自然基金

Understanding structural evolution of galaxies with machine learning
  • 批准号:
    n/a
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
非标准随机调度模型的最优动态策略
  • 批准号:
    71071056
  • 批准年份:
    2010
  • 资助金额:
    28.0 万元
  • 项目类别:
    面上项目
微生物发酵过程的自组织建模与优化控制
  • 批准号:
    60704036
  • 批准年份:
    2007
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Development of a Novel EMG-Based Neural Interface for Control of Transradial Prostheses with Gripping Assistance
开发一种新型的基于肌电图的神经接口,用于通过抓取辅助控制经桡动脉假体
  • 批准号:
    10748341
  • 财政年份:
    2024
  • 资助金额:
    $ 3.64万
  • 项目类别:
Presymptom: development of a novel machine-learning-derived diagnostic test to rule out infection to enable enhanced clinical care and better targeted anti-microbial use
症状前:开发一种新型的机器学习诊断测试来排除感染,从而加强临床护理和更有针对性的抗菌药物使用
  • 批准号:
    10089281
  • 财政年份:
    2024
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Investment Accelerator
Development of Understanding and Preparation for Machine learning for Accelerated Carbonation Technology Pelletisation Process - Carbon8
加速碳酸化技术造粒过程的机器学习的理解和准备的发展 - Carbon8
  • 批准号:
    10091589
  • 财政年份:
    2024
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Collaborative R&D
Utilising Quantum Machine Learning and quantum computing for genomic research and development
利用量子机器学习和量子计算进行基因组研究和开发
  • 批准号:
    10083188
  • 财政年份:
    2023
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Small Business Research Initiative
Development of an RNA-based test for diagnosing and monitoring bone and soft tissue cancers
开发基于 RNA 的测试来诊断和监测骨癌和软组织癌
  • 批准号:
    480287
  • 财政年份:
    2023
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Operating Grants
Development of a correlational algorithm between oral function examination and oral-related QoL using machine learning.
使用机器学习开发口腔功能检查和口腔相关生活质量之间的相关算法。
  • 批准号:
    23K09302
  • 财政年份:
    2023
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of a new EBSD analysis method combining dynamical scattering theory and machine learning
结合动态散射理论和机器学习开发新的 EBSD 分析方法
  • 批准号:
    23H01276
  • 财政年份:
    2023
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Development and integration of organic solar cell and organic transistor materials using graph-based machine learning
使用基于图形的机器学习开发和集成有机太阳能电池和有机晶体管材料
  • 批准号:
    23H02064
  • 财政年份:
    2023
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
GOALI: Frameworks: At-Scale Heterogeneous Data based Adaptive Development Platform for Machine-Learning Models for Material and Chemical Discovery
GOALI:框架:基于大规模异构数据的自适应开发平台,用于材料和化学发现的机器学习模型
  • 批准号:
    2311632
  • 财政年份:
    2023
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Standard Grant
Collaborative Research: Advancing the Science of STEM Interest Development through Educational Gameplay with Machine Learning and Data-driven Interviews
合作研究:通过机器学习和数据驱动访谈的教育游戏推进 STEM 兴趣发展科学
  • 批准号:
    2301173
  • 财政年份:
    2023
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了