Structured compressed sensing algorithms: design, analysis and applications

结构化压缩感知算法:设计、分析和应用

基本信息

  • 批准号:
    RGPIN-2015-04794
  • 负责人:
  • 金额:
    $ 2.48万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2020
  • 资助国家:
    加拿大
  • 起止时间:
    2020-01-01 至 2021-12-31
  • 项目状态:
    已结题

项目摘要

Many problems in science and engineering require the reconstruction of an object - an image, signal or high-dimensional function, for example - from a collection of measurements. Due to time, cost or other constraints, one is often severely limited by the amount of data that can be collected, which significantly affects ones ability to recover the unknown object accurately. This research program involves the development, analysis and application of new algorithms for this problem, based on the theory and techniques of compressed sensing (CS). Examples of relevant applications include medical imaging, microscopy, uncertainty quantification in physical systems, machine learning and the numerical solution of PDEs. Its overarching objective is to introduce new, computationally-efficient numerical optimization techniques for such applications that possess both better accuracy and lower acquisition time and cost. Specific objectives 1) To design and implement a new generation of CS-based algorithms for imaging that incorporate additional structure in both the sampling and recovery process. By leveraging such structure, this work is expected to bring substantial improvements over current state-of-the-art algorithms, yielding tangible benefits in key imaging technologies such as MRI, X-ray CT and electron and fluorescence microscopy. 2) To develop and study new CS-based methods for high-dimensional approximation that exploit structured smoothness-sparsity priors and randomized sampling techniques to enhance accuracy. As data collection becomes easier and more widespread, there is a pressing need in science and engineering to understand increasingly complex phenomena by approximating high-dimensional functions. The outcomes of this work will be improved techniques for this problem, bringing benefits to important practical tasks such as uncertainty quantification in physical (e.g. biological, mechanical or fluid) systems. 3) To investigate the limits of stability and accuracy for sampling-based algorithms in scientific computing, and to design new computational methods based on conformal mappings that attain such limits. Sampling-based algorithms have a variety of uses in scientific computing, including surface reconstruction, numerical methods for PDEs and numerical software. This work will enhance knowledge through a better understanding of the theoretical limits achievable by any algorithm for this problem, and its benefit will be an improved set of methods based on such limits. Overall, the focus of this research program is the development of new algorithms for challenging data-oriented problems. It aims to bring benefits in a range of applications in key areas of national need in science, engineering and medicine. This research will also contribute to the pressing need for skills in these areas, both in academia and industry, through the training of HQP.
科学和工程中的许多问题需要从一系列测量数据中重建一个对象——例如图像、信号或高维函数。由于时间、成本或其他限制,可以收集的数据量往往受到严重限制,这严重影响了人们准确恢复未知物体的能力。本研究计划涉及基于压缩感知(CS)理论和技术的新算法的开发、分析和应用。相关应用的例子包括医学成像、显微镜、物理系统中的不确定度量化、机器学习和偏微分方程的数值解。它的首要目标是为这些应用引入新的、计算效率高的数值优化技术,这些技术具有更好的精度和更低的采集时间和成本。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Adcock, Benjamin其他文献

Adcock, Benjamin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Adcock, Benjamin', 18)}}的其他基金

Scientific machine learning: bridging the gap between theory and practice in deep learning for computational science and engineering applications
科学机器学习:弥合计算科学和工程应用深度学习理论与实践之间的差距
  • 批准号:
    RGPIN-2021-02470
  • 财政年份:
    2022
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Discovery Grants Program - Individual
Scientific machine learning: bridging the gap between theory and practice in deep learning for computational science and engineering applications
科学机器学习:弥合计算科学和工程应用深度学习理论与实践之间的差距
  • 批准号:
    RGPIN-2021-02470
  • 财政年份:
    2021
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Discovery Grants Program - Individual
Structured compressed sensing algorithms: design, analysis and applications
结构化压缩感知算法:设计、分析和应用
  • 批准号:
    RGPIN-2015-04794
  • 财政年份:
    2019
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Discovery Grants Program - Individual
Structured compressed sensing algorithms: design, analysis and applications
结构化压缩感知算法:设计、分析和应用
  • 批准号:
    RGPIN-2015-04794
  • 财政年份:
    2018
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Discovery Grants Program - Individual
Structured compressed sensing algorithms: design, analysis and applications
结构化压缩感知算法:设计、分析和应用
  • 批准号:
    RGPIN-2015-04794
  • 财政年份:
    2017
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Discovery Grants Program - Individual
Structured compressed sensing algorithms: design, analysis and applications
结构化压缩感知算法:设计、分析和应用
  • 批准号:
    RGPIN-2015-04794
  • 财政年份:
    2016
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Discovery Grants Program - Individual
Structured compressed sensing algorithms: design, analysis and applications
结构化压缩感知算法:设计、分析和应用
  • 批准号:
    RGPIN-2015-04794
  • 财政年份:
    2015
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Discovery Grants Program - Individual
Computing nodal sets of Laplace eigenfunctions on bounded domains
计算有界域上拉普拉斯本征函数的节点集
  • 批准号:
    388772-2010
  • 财政年份:
    2011
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Postdoctoral Fellowships
Computing nodal sets of Laplace eigenfunctions on bounded domains
计算有界域上拉普拉斯本征函数的节点集
  • 批准号:
    388772-2010
  • 财政年份:
    2010
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Postdoctoral Fellowships

相似国自然基金

基于压缩传感理论的高时空分辨率动态磁共振成像关键技术研究
  • 批准号:
    30900328
  • 批准年份:
    2009
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Sparsity-Based Autonomous Adaptability in Circuit and Systems Utilizing Compressed Sensing
利用压缩感知的电路和系统中基于稀疏性的自主适应性
  • 批准号:
    23K18463
  • 财政年份:
    2023
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
PhD in Compressed Sensing for Egocentric Video
自我中心视频压缩感知博士
  • 批准号:
    2894973
  • 财政年份:
    2023
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Studentship
Compressed sensingを用いた正確な口腔癌深達度の三次元的取得
利用压缩传感精确三维获取口腔癌浸润深度
  • 批准号:
    22K10174
  • 财政年份:
    2022
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Multidimensional OCT Imaging Enabled by Compressed Sensing
压缩感知实现多维 OCT 成像
  • 批准号:
    10674616
  • 财政年份:
    2022
  • 资助金额:
    $ 2.48万
  • 项目类别:
Learning Nonlinear Dynamics from Data Using Sparse Optimization and Compressed Sensing
使用稀疏优化和压缩感知从数据中学习非线性动力学
  • 批准号:
    RGPIN-2018-06135
  • 财政年份:
    2022
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Discovery Grants Program - Individual
Compressed sensing for medical applications
医疗应用的压缩传感
  • 批准号:
    EP/W015412/1
  • 财政年份:
    2022
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Research Grant
Multidimensional OCT Imaging Enabled by Compressed Sensing
压缩感知实现多维 OCT 成像
  • 批准号:
    10527816
  • 财政年份:
    2022
  • 资助金额:
    $ 2.48万
  • 项目类别:
Collaborative Research: CIF: Small: Low-Complexity Algorithms for Unsourced Multiple Access and Compressed Sensing in Large Dimensions
合作研究:CIF:小型:大维度无源多址和压缩感知的低复杂度算法
  • 批准号:
    2131115
  • 财政年份:
    2021
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Standard Grant
Development of EEG Measurement Circuit System by Compressed Sensing Using Random Sampling
利用随机采样的压缩感知开发脑电图测量电路系统
  • 批准号:
    21H03410
  • 财政年份:
    2021
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Development of high-speed coronary MRA imaging method using compressed sensing
利用压缩感知开发高速冠状动脉MRA成像方法
  • 批准号:
    21K07621
  • 财政年份:
    2021
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了