Random walks in irregular media
不规则介质中的随机游走
基本信息
- 批准号:RGPIN-2016-03703
- 负责人:
- 金额:$ 2.91万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2020
- 资助国家:加拿大
- 起止时间:2020-01-01 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The study of random walks in mathematics goes back as least as far as the work of Polya in 1921; he showed that a simple random walk in one or two dimensions will return to its starting point infinitely often, while in 3 or more dimensions it will ultimately leave its initial neighbourhood, never to return. At large length scales random walks can be approximated by Brownian motion. The connection between diffusion and partial differential equations (PDE) is due to Einstein; the transition probabilities of the diffusion process are solutions to the heat equation. These connections, which hold in great generality, were explored very thoroughly in the second part of the 20th century by mathematicians.
The proposed research is to study random walks (or other diffusion processes) in irregular media. An example would be an infinite road grid, where according to some stochastic mechanism a proportion of the streets are blocked. (In the case when this is completely at random this is the percolation model.) Two main types of behaviour can arise. The first is that the obstacles (i.e. irregularities) just have a local effect, so that viewed from a great distance (i.e. at large length scales) they play no essential role, and the random walker just appears as a particle moving in a homogeneous medium. The second possibility is that the effect of the irregularity persists at all length scales. This often occurs when the limiting object has fractal properties. In these circumstances the irregularity of the medium acts to slow down the particle; its displacement grows more slowly than that of the simple random walk. This phenomena is often called 'anomalous diffusion'.
The proposed research will consider both types of behaviour. In the first case, the problems are to study general kinds of irregular environments and (as far as it remains true) to prove two types of regularity for the large scale (or more precisely limiting) process. The first kind of regularity is an extension of the classical Central Limit Theorem - the particle displacement at large times should be close to a Brownian motion. The second kind of regularity is that the transition densities of the particle motion can be controlled by multiples of the Gaussian distribution. If both kinds of regularity occur then one has an very good description of the particle motion.
In the second case, the overall aim is to find methods for computing the behaviour of the random process given knowledge of the kind of graph irregularity. For exampe, one would like to compute the 'walk dimension', which describes the rate at which (on average) a particle moves from its starting point. One interesting set of examples are uniform spanning trees. These can be tackled theoretically because the branches of the trees can be described by random walk paths with the loops erased.
数学中对随机游动的研究至少可以追溯到波利亚在1921年的工作;他证明了一个简单的随机游动在一维或二维中会无限地回到它的起点,而在三维或多维中,它最终会离开它的初始邻域,永远不会返回。在大尺度上,随机游动可以用布朗运动来近似。扩散和偏微分方程(PDE)之间的联系是由于爱因斯坦;扩散过程的跃迁概率是热方程的解。这些具有普遍性的联系在世纪后半叶被数学家们非常彻底地研究过。
拟议的研究是研究不规则介质中的随机游动(或其他扩散过程)。一个例子是一个无限的道路网格,根据某种随机机制,一部分街道被阻塞。(In当这是完全随机的情况下,这是渗流模型。可能出现两种主要类型的行为。第一种是障碍物(即不规则物)只具有局部效应,因此从很远的距离(即在很大的长度尺度上)看,它们并不起重要作用,随机步行者只是看起来像在均匀介质中运动的粒子。第二种可能性是,不规则性的影响在所有长度尺度上都持续存在。当限制对象具有分形属性时,通常会发生这种情况。在这些情况下,介质的不规则性使粒子减速;它的位移比简单的随机游动增长得慢。这种现象通常被称为“反常扩散”。
拟议的研究将考虑这两种行为。在第一种情况下,问题是研究一般类型的不规则环境和(只要它仍然是真的),以证明两种类型的规律性的大规模(或更准确地说,限制)的过程。第一种正则性是经典中心极限定理的推广--粒子位移在大的时候应该接近布朗运动。第二种规律是粒子运动的跃迁密度可以由高斯分布的倍数来控制。如果这两种规律性都出现,那么就可以很好地描述质点的运动。
在第二种情况下,总体目标是找到方法来计算的随机过程的行为给定的知识的那种图形的不规则性。例如,人们想计算“行走维度”,它描述了粒子从其起点移动的(平均)速率。一组有趣的例子是均匀生成树。这些都可以在理论上解决,因为树的分支可以用删除循环的随机行走路径来描述。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Barlow, Martin其他文献
Barlow, Martin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Barlow, Martin', 18)}}的其他基金
Random walks in irregular media
不规则介质中的随机游走
- 批准号:
RGPIN-2016-03703 - 财政年份:2019
- 资助金额:
$ 2.91万 - 项目类别:
Discovery Grants Program - Individual
Random walks in irregular media
不规则介质中的随机游走
- 批准号:
RGPIN-2016-03703 - 财政年份:2018
- 资助金额:
$ 2.91万 - 项目类别:
Discovery Grants Program - Individual
Random walks in irregular media
不规则介质中的随机游走
- 批准号:
RGPIN-2016-03703 - 财政年份:2017
- 资助金额:
$ 2.91万 - 项目类别:
Discovery Grants Program - Individual
Random walks in irregular media
不规则介质中的随机游走
- 批准号:
RGPIN-2016-03703 - 财政年份:2016
- 资助金额:
$ 2.91万 - 项目类别:
Discovery Grants Program - Individual
The Institute Innovation Platform
研究院创新平台
- 批准号:
468799-2014 - 财政年份:2015
- 资助金额:
$ 2.91万 - 项目类别:
Partnerships Innovation Platform
Random walks in irregular media
不规则介质中的随机游走
- 批准号:
138460-2011 - 财政年份:2015
- 资助金额:
$ 2.91万 - 项目类别:
Discovery Grants Program - Individual
PIMS: Pacific Institute for the Mathematical Sciences
PIMS:太平洋数学科学研究所
- 批准号:
342044-2014 - 财政年份:2015
- 资助金额:
$ 2.91万 - 项目类别:
Thematic Resources Support in Mathematics and Statistics
The Institute Innovation Platform
研究院创新平台
- 批准号:
468799-2014 - 财政年份:2014
- 资助金额:
$ 2.91万 - 项目类别:
Partnerships Innovation Platform
Random walks in irregular media
不规则介质中的随机游走
- 批准号:
138460-2011 - 财政年份:2014
- 资助金额:
$ 2.91万 - 项目类别:
Discovery Grants Program - Individual
PIMS: Pacific Institute for the Mathematical Sciences
PIMS:太平洋数学科学研究所
- 批准号:
342044-2014 - 财政年份:2014
- 资助金额:
$ 2.91万 - 项目类别:
Thematic Resources Support in Mathematics and Statistics
相似海外基金
Random walks in irregular media
不规则介质中的随机游走
- 批准号:
RGPIN-2016-03703 - 财政年份:2019
- 资助金额:
$ 2.91万 - 项目类别:
Discovery Grants Program - Individual
Random walks in irregular media
不规则介质中的随机游走
- 批准号:
RGPIN-2016-03703 - 财政年份:2018
- 资助金额:
$ 2.91万 - 项目类别:
Discovery Grants Program - Individual
Random walks in irregular media
不规则介质中的随机游走
- 批准号:
RGPIN-2016-03703 - 财政年份:2017
- 资助金额:
$ 2.91万 - 项目类别:
Discovery Grants Program - Individual
Random walks in irregular media
不规则介质中的随机游走
- 批准号:
RGPIN-2016-03703 - 财政年份:2016
- 资助金额:
$ 2.91万 - 项目类别:
Discovery Grants Program - Individual
Random walks in irregular media
不规则介质中的随机游走
- 批准号:
138460-2011 - 财政年份:2015
- 资助金额:
$ 2.91万 - 项目类别:
Discovery Grants Program - Individual
Random walks in irregular media
不规则介质中的随机游走
- 批准号:
138460-2011 - 财政年份:2014
- 资助金额:
$ 2.91万 - 项目类别:
Discovery Grants Program - Individual
Random walks in irregular media
不规则介质中的随机游走
- 批准号:
138460-2011 - 财政年份:2013
- 资助金额:
$ 2.91万 - 项目类别:
Discovery Grants Program - Individual
Random walks in irregular media
不规则介质中的随机游走
- 批准号:
138460-2011 - 财政年份:2012
- 资助金额:
$ 2.91万 - 项目类别:
Discovery Grants Program - Individual
Random walks in irregular media
不规则介质中的随机游走
- 批准号:
138460-2011 - 财政年份:2011
- 资助金额:
$ 2.91万 - 项目类别:
Discovery Grants Program - Individual
Random walks in irregular media
不规则介质中的随机游走
- 批准号:
138460-2005 - 财政年份:2010
- 资助金额:
$ 2.91万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




