Complex approximation on Riemann surfaces and in infinite dimensions

黎曼曲面和无限维上的复近似

基本信息

  • 批准号:
    RGPIN-2016-04107
  • 负责人:
  • 金额:
    $ 1.31万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2020
  • 资助国家:
    加拿大
  • 起止时间:
    2020-01-01 至 2021-12-31
  • 项目状态:
    已结题

项目摘要

The topic of this research is approximation theory. It is theoretical in nature, which means that it is potentially applicable to a wide variety of situations, but in order to apply to a particular field, say energy, collaboration will be required between applied mathematicians, physcists and engineers in order to make explicit how such mathematical entities as a, b and c can be interpreted as say force, potential energy and kinetic energy. More specifically, my research involves trying to approximate given functions by nicer ones. The functions we encounter in the world are often too complicated to deal with, so we seek simpler mathematical functions which approximate the real functions of the world. If these simpler functions approximate the real functions well enough, we can make the desired predictions within an acceptable degree of accuracy. For example, if we can make a watch which loses only one second in one hundred years, most people would be satisfied. Such a watch only approximates real time, but extremely well. The nice functions I wish to approximate with are the so-called analytic functions. These are functions f(x), which have the virtue that they can be written in the form of infinite series f(x) = a + bx + cx2 + . . . where x is the variable and the coefficients a, b, c, . . . are constants. Analytic functions have extremely nice properties. For example, their global behaviour is uniquely determined by their local behavior. This means, for example, that if we know that some universal phenomenon behaves analytically, then, in principle, its behavior behind some distant star is completely determined by its behaviour on earth. Thus, (again in principle) we can know the behavior behind the star without going there, provided we can know it sufficiently well right here on earth. Our approach to approximating a given function g by an analytic function f is a localization process. We first approximate the function g in various local regions by analytic functions in these local regions. Then, we try to piece together these local analytic functions in order to get a global analytic function f which approximates our initial function g. This is hard to do, because the aforementioned uniqueness property of analytic functions makes it very difficult to patch analytic functions together and still retain analyticity.
本研究的主题是逼近理论。它本质上是理论的,这意味着它可能适用于各种各样的情况,但为了应用到一个特定的领域,比如能量,将需要应用数学家、物理学家和工程师之间的合作,以明确如何将a、b和c这样的数学实体解释为比方说力、势能和动能。更具体地说,我的研究涉及尝试用更好的函数来逼近给定的函数。我们在世界上遇到的函数往往太复杂,难以处理,所以我们寻求更简单的数学函数,它们近似于世界的真实函数。如果这些更简单的函数足够好地逼近实函数,我们就可以在可接受的精度范围内做出所需的预测。例如,如果我们能制造一块一百年只慢一秒的手表,大多数人都会满意。这样的手表只能接近实时,但非常准确。我想要近似的好函数是所谓的解析函数。这些是函数f(X),它们的优点是它们可以写成无穷级数的形式 F(X)=a+bx+cx2+。。。 其中x是变量,系数a,b,c,.。。是常量。解析函数具有非常好的性质。例如,它们的全球行为由它们的本地行为独一无二地决定。这意味着,例如,如果我们知道某些普遍现象的行为是解析的,那么,原则上,它在某个遥远恒星后面的行为完全由它在地球上的行为决定。因此,(同样在原则上)我们可以知道恒星背后的行为,而不需要去那里,前提是我们在地球上能够足够好地了解它。 我们用解析函数f逼近给定函数g的方法是一个局部化过程。我们首先用不同局部区域上的解析函数来逼近函数g。然后,我们试图将这些局部解析函数拼凑在一起,以得到一个全局解析函数f,它近似于我们的初始函数g。这是很难做到的,因为前面提到的解析函数的唯一性使得将解析函数拼接在一起并且仍然保持解析性是非常困难的。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Gauthier, Paul其他文献

Gauthier, Paul的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Gauthier, Paul', 18)}}的其他基金

Complex approximation on Riemann surfaces and in infinite dimensions
黎曼曲面和无限维上的复近似
  • 批准号:
    RGPIN-2016-04107
  • 财政年份:
    2021
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Complex approximation on Riemann surfaces and in infinite dimensions
黎曼曲面和无限维上的复近似
  • 批准号:
    RGPIN-2016-04107
  • 财政年份:
    2019
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Complex approximation on Riemann surfaces and in infinite dimensions
黎曼曲面和无限维上的复近似
  • 批准号:
    RGPIN-2016-04107
  • 财政年份:
    2018
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Complex approximation on Riemann surfaces and in infinite dimensions
黎曼曲面和无限维上的复近似
  • 批准号:
    RGPIN-2016-04107
  • 财政年份:
    2017
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Complex approximation on Riemann surfaces and in infinite dimensions
黎曼曲面和无限维上的复近似
  • 批准号:
    RGPIN-2016-04107
  • 财政年份:
    2016
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Analytic approximation
解析近似
  • 批准号:
    5597-2007
  • 财政年份:
    2013
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Analytic approximation
解析近似
  • 批准号:
    5597-2007
  • 财政年份:
    2010
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Analytic approximation
解析近似
  • 批准号:
    5597-2007
  • 财政年份:
    2009
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Analytic approximation
解析近似
  • 批准号:
    5597-2007
  • 财政年份:
    2008
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Analytic approximation
解析近似
  • 批准号:
    5597-2007
  • 财政年份:
    2007
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

非牛顿流方程(组)及其随机模型无穷维动力系统的研究
  • 批准号:
    11126160
  • 批准年份:
    2011
  • 资助金额:
    3.0 万元
  • 项目类别:
    数学天元基金项目
枢纽港选址及相关问题的算法设计
  • 批准号:
    71001062
  • 批准年份:
    2010
  • 资助金额:
    17.6 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

High Dimensional Approximation, Learning, and Uncertainty
高维近似、学习和不确定性
  • 批准号:
    DP240100769
  • 财政年份:
    2024
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Projects
Approximation theory of structured neural networks
结构化神经网络的逼近理论
  • 批准号:
    DP240101919
  • 财政年份:
    2024
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Projects
Approximation properties in von Neumann algebras
冯·诺依曼代数中的近似性质
  • 批准号:
    2400040
  • 财政年份:
    2024
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Standard Grant
Approximation of transport maps from local and non-local Monge-Ampere equations
根据局部和非局部 Monge-Ampere 方程近似输运图
  • 批准号:
    2308856
  • 财政年份:
    2023
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: Medium: Data Driven Modeling and Analysis of Energy Conversion Systems -- Manifold Learning and Approximation
合作研究:CPS:媒介:能量转换系统的数据驱动建模和分析——流形学习和逼近
  • 批准号:
    2223987
  • 财政年份:
    2023
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Standard Grant
A Lebesgue Integral based Approximation for Language Modelling
基于勒贝格积分的语言建模近似
  • 批准号:
    EP/X019063/1
  • 财政年份:
    2023
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Research Grant
Collaborative Research: CPS: Medium: Data Driven Modeling and Analysis of Energy Conversion Systems -- Manifold Learning and Approximation
合作研究:CPS:媒介:能量转换系统的数据驱动建模和分析——流形学习和逼近
  • 批准号:
    2223985
  • 财政年份:
    2023
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: Medium: Data Driven Modeling and Analysis of Energy Conversion Systems -- Manifold Learning and Approximation
合作研究:CPS:媒介:能量转换系统的数据驱动建模和分析——流形学习和逼近
  • 批准号:
    2223986
  • 财政年份:
    2023
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Standard Grant
Lp-Approximation Properties, Multipliers, and Quantized Calculus
Lp 近似属性、乘子和量化微积分
  • 批准号:
    2247123
  • 财政年份:
    2023
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Standard Grant
Development of a novel best approximation theory with applications
开发一种新颖的最佳逼近理论及其应用
  • 批准号:
    DP230102079
  • 财政年份:
    2023
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Projects
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了