Group theory and nonlinear phenomena in physics
物理学中的群论和非线性现象
基本信息
- 批准号:RGPIN-2016-04025
- 负责人:
- 金额:$ 2.91万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2020
- 资助国家:加拿大
- 起止时间:2020-01-01 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
I plan to concentrate on two related areas namely Superintegrability in Classical and Quantum Theories and Continuous Symmetries of Discrete Equations.The connection between them and the expected impact of both is that I intend to find and study new superintegrable and exactly solvable classical and quantum systems in both continuous and discrete space-time. In the discrete case such systems are are governed by difference equations, rather than differential ones. The essential tool is Lie algebra theory and its generalizations.
1. SUPERINTEGRABILITY.
Superintegrable systems are Hamiltonian systems that allow more integrals of motion than they have degrees of freedom. The best known ones and only rotationally invariant ones are the harmonic oscillator and the Kepler-Coulomb system. They are of physical interest for several reasons. They are exactly solvable . The integrals of motion form interesting non-Abelian algebras. In classical mechanics all bounded trajectories in maximally superintegrable systems are closed and the motion is periodic. In quantum mechanics they exhibit "accidental" degeneracy of energy levels. Until recently superintegrable systems were considered to be extremely rare. Recently we have shown that infinite families of maximally superintegrable systems exist with integrals of motion that are polynomials of arbitrary order in the momenta. Superintegrable systems with their non-Abelian algebras of integrals are finite-dimensional analogs of infinite dimensional soliton systems.
In the next 5 years I plan to systematically study superintegrable scalar systems with integrals of motion that are polynomials of order N in the momenta and to investigate their connection with supersymmetry in quantum mechanics and with the theory of Painleve transcendents. My future work will also include systems with magnetic fields and particles with nonzero spin.
2.SYMMETRIES OF DISCRETE EQUATIONS.
This is a general and ambitious program the aim of which is to turn Lie group theory into an efficient tool for solving equations describing discrete linear and non-linear physical phenomena. The program has two aspects. One is analytic, namely to use Lie theory to obtain exact analytic solutions of these discrete equations. The other is numeric and intersects with the theory of geometric integration. Here the idea is to use symmetry adapted lattices to discretize differential equations while preserving their entire Lie point symmetry groups, or at least a large physical subgroup of the entire symmetry group. We have shown that for ordinary differential equations preserving Lie point symmetries improves the numerics, specially close to singularities of solutions. In the next 5 years I plan to concentrate on partial differential equations from this point of view. Part of the program is to develop quantum theory on lattices while preserving Lorentz, Galilei, or conformal invariance.
我计划集中在两个相关的领域,即经典和量子理论中的超可积性和离散方程的连续对称性。它们之间的联系以及两者的预期影响是,我打算在连续和离散时空中寻找和研究新的超可积和精确可解的经典和量子系统。在离散情况下,这样的系统是由差分方程控制的,而不是微分方程。必不可少的工具是李代数理论及其推广。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Winternitz, Pavel其他文献
Winternitz, Pavel的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Winternitz, Pavel', 18)}}的其他基金
Group theory and nonlinear phenomena in physics
物理学中的群论和非线性现象
- 批准号:
RGPIN-2016-04025 - 财政年份:2019
- 资助金额:
$ 2.91万 - 项目类别:
Discovery Grants Program - Individual
Group theory and nonlinear phenomena in physics
物理学中的群论和非线性现象
- 批准号:
RGPIN-2016-04025 - 财政年份:2018
- 资助金额:
$ 2.91万 - 项目类别:
Discovery Grants Program - Individual
Group theory and nonlinear phenomena in physics
物理学中的群论和非线性现象
- 批准号:
RGPIN-2016-04025 - 财政年份:2017
- 资助金额:
$ 2.91万 - 项目类别:
Discovery Grants Program - Individual
Group theory and nonlinear phenomena in physics
物理学中的群论和非线性现象
- 批准号:
RGPIN-2016-04025 - 财政年份:2016
- 资助金额:
$ 2.91万 - 项目类别:
Discovery Grants Program - Individual
Group theory and nonlinear phenomena in physics
物理学中的群论和非线性现象
- 批准号:
4942-2011 - 财政年份:2015
- 资助金额:
$ 2.91万 - 项目类别:
Discovery Grants Program - Individual
Group theory and nonlinear phenomena in physics
物理学中的群论和非线性现象
- 批准号:
4942-2011 - 财政年份:2014
- 资助金额:
$ 2.91万 - 项目类别:
Discovery Grants Program - Individual
Group theory and nonlinear phenomena in physics
物理学中的群论和非线性现象
- 批准号:
4942-2011 - 财政年份:2013
- 资助金额:
$ 2.91万 - 项目类别:
Discovery Grants Program - Individual
Group theory and nonlinear phenomena in physics
物理学中的群论和非线性现象
- 批准号:
4942-2011 - 财政年份:2012
- 资助金额:
$ 2.91万 - 项目类别:
Discovery Grants Program - Individual
Group theory and nonlinear phenomena in physics
物理学中的群论和非线性现象
- 批准号:
4942-2011 - 财政年份:2011
- 资助金额:
$ 2.91万 - 项目类别:
Discovery Grants Program - Individual
Group theory and nonlinear phenomena in physics
物理学中的群论和非线性现象
- 批准号:
4942-2010 - 财政年份:2010
- 资助金额:
$ 2.91万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Fibered纽结的自同胚、Floer同调与4维亏格
- 批准号:12301086
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
基于密度泛函理论金原子簇放射性药物设计、制备及其在肺癌诊疗中的应用研究
- 批准号:82371997
- 批准年份:2023
- 资助金额:48.00 万元
- 项目类别:面上项目
基于isomorph theory研究尘埃等离子体物理量的微观动力学机制
- 批准号:12247163
- 批准年份:2022
- 资助金额:18.00 万元
- 项目类别:专项项目
Toward a general theory of intermittent aeolian and fluvial nonsuspended sediment transport
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:
英文专著《FRACTIONAL INTEGRALS AND DERIVATIVES: Theory and Applications》的翻译
- 批准号:12126512
- 批准年份:2021
- 资助金额:12.0 万元
- 项目类别:数学天元基金项目
钱江潮汐影响下越江盾构开挖面动态泥膜形成机理及压力控制技术研究
- 批准号:LY21E080004
- 批准年份:2020
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于Restriction-Centered Theory的自然语言模糊语义理论研究及应用
- 批准号:61671064
- 批准年份:2016
- 资助金额:65.0 万元
- 项目类别:面上项目
高阶微分方程的周期解及多重性
- 批准号:11501240
- 批准年份:2015
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
四维流形上的有限群作用与奇异光滑结构
- 批准号:11301334
- 批准年份:2013
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Group theory and nonlinear phenomena in physics
物理学中的群论和非线性现象
- 批准号:
RGPIN-2016-04025 - 财政年份:2019
- 资助金额:
$ 2.91万 - 项目类别:
Discovery Grants Program - Individual
Group theory and nonlinear phenomena in physics
物理学中的群论和非线性现象
- 批准号:
RGPIN-2016-04025 - 财政年份:2018
- 资助金额:
$ 2.91万 - 项目类别:
Discovery Grants Program - Individual
Group theory and nonlinear phenomena in physics
物理学中的群论和非线性现象
- 批准号:
RGPIN-2016-04025 - 财政年份:2017
- 资助金额:
$ 2.91万 - 项目类别:
Discovery Grants Program - Individual
Group theory and nonlinear phenomena in physics
物理学中的群论和非线性现象
- 批准号:
RGPIN-2016-04025 - 财政年份:2016
- 资助金额:
$ 2.91万 - 项目类别:
Discovery Grants Program - Individual
Group theory and nonlinear phenomena in physics
物理学中的群论和非线性现象
- 批准号:
4942-2011 - 财政年份:2015
- 资助金额:
$ 2.91万 - 项目类别:
Discovery Grants Program - Individual
Group theory and nonlinear phenomena in physics
物理学中的群论和非线性现象
- 批准号:
4942-2011 - 财政年份:2014
- 资助金额:
$ 2.91万 - 项目类别:
Discovery Grants Program - Individual
Group theory and nonlinear phenomena in physics
物理学中的群论和非线性现象
- 批准号:
4942-2011 - 财政年份:2013
- 资助金额:
$ 2.91万 - 项目类别:
Discovery Grants Program - Individual
Group theory and nonlinear phenomena in physics
物理学中的群论和非线性现象
- 批准号:
4942-2011 - 财政年份:2012
- 资助金额:
$ 2.91万 - 项目类别:
Discovery Grants Program - Individual
Group theory and nonlinear phenomena in physics
物理学中的群论和非线性现象
- 批准号:
4942-2011 - 财政年份:2011
- 资助金额:
$ 2.91万 - 项目类别:
Discovery Grants Program - Individual
Group theory and nonlinear phenomena in physics
物理学中的群论和非线性现象
- 批准号:
4942-2010 - 财政年份:2010
- 资助金额:
$ 2.91万 - 项目类别:
Discovery Grants Program - Individual