Integrated biosignal data analysis for performance assessment

用于绩效评估的综合生物信号数据分析

基本信息

  • 批准号:
    RGPIN-2016-04788
  • 负责人:
  • 金额:
    $ 2.26万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2020
  • 资助国家:
    加拿大
  • 起止时间:
    2020-01-01 至 2021-12-31
  • 项目状态:
    已结题

项目摘要

Biological signals provide a window into essential functions in the human body. Human movement involves transmission of control signals from the brain to activate skeletal muscles, which in turn, contract and generate force and movement. The activation signal within the muscle is detected and recorded as the electromyogram (EMG). Given the connection between activation and force, an extensive body of work on predicting force from recorded EMG has been generated. We have developed EMG-force models based on single site recordings, and more recently on multi-site high-density EMG recordings, in which muscle activation is detected over a large surface area of the muscle under study. These models, however, are still limited by an incomplete picture of the muscle activation. As well, we are unable to directly measure output forces for individual muscles (as a surrogate, joint moment is measured, where the moment is controlled by several muscles acting across the joint). Reasonable force estimation has been achieved only under highly restricted, usually isometric (constant position), experimental conditions. This is in part because muscle activation changes with postural changes, which alter the biomechanics of the system. Our work has focussed on EMG-based prediction of forces about the elbow joint, in healthy individuals, using advanced signal processing and system modeling techniques. In order to advance our work to develop accurate and reliable force prediction under less restricted, dynamic conditions, we will explicitly include information on the biomechanics of the limb, and on how muscle activation is coordinated, in our force prediction models. The innovative signal processing techniques and model structures that we develop will contribute to our fundamental understanding of normal muscle function and control. In the course of this work, six graduate and four undergraduate students will be trained in the acquisition of EMG data, and the use of advanced processing and modeling techniques. The results of our research will be directly applicable to problems in ergonomics, athletics, and rehabilitation, providing significant benefits to Canada and Canadians.
生物信号为了解人体的基本功能提供了一个窗口。人类的运动包括从大脑传输控制信号来激活骨骼肌,骨骼肌反过来收缩并产生力量和运动。肌肉内的激活信号被检测并记录为肌电(EMG)。考虑到激活和力之间的联系,从记录的肌电中预测力的大量工作已经产生。我们已经开发了基于单部位记录的肌电力模型,以及最近基于多部位高密度肌电记录的肌电力模型,在该记录中,肌肉的激活在被研究的肌肉的大表面积上被检测到。然而,这些模型仍然受到肌肉激活的不完整图像的限制。同样,我们无法直接测量单个肌肉的输出力(作为替代,关节力矩是测量的,其中力矩由几个肌肉跨关节控制)。只有在高度受限的,通常是等距(恒定位置)的实验条件下,才能实现合理的力估计。这在一定程度上是因为肌肉的激活会随着姿势的改变而改变,从而改变系统的生物力学。 我们的工作重点是使用先进的信号处理和系统建模技术,在健康个体中基于肌电预测肘关节的力。为了推进我们的工作,在限制较少的动态条件下开发准确和可靠的力预测,我们将在力预测模型中明确包含有关肢体生物力学以及肌肉激活如何协调的信息。我们开发的创新信号处理技术和模型结构将有助于我们对正常肌肉功能和控制的基本理解。在这项工作中,将对6名研究生和4名本科生进行肌电数据获取以及先进处理和建模技术的使用方面的培训。我们的研究结果将直接适用于人体工程学、田径和康复方面的问题,为加拿大和加拿大人带来重大好处。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Morin, Evelyn其他文献

EMG-force modeling using parallel cascade identification
  • DOI:
    10.1016/j.jelekin.2011.10.012
  • 发表时间:
    2012-06-01
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Hashemi, Javad;Morin, Evelyn;Hashtrudi-Zaad, Keyvan
  • 通讯作者:
    Hashtrudi-Zaad, Keyvan
Use of the Fast Orthogonal Search Method to Estimate Optimal Joint Angle For Upper Limb Hill-Muscle Models
  • DOI:
    10.1109/tbme.2009.2036444
  • 发表时间:
    2010-04-01
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Mountjoy, Katherine;Morin, Evelyn;Hashtrudi-Zaad, Keyvan
  • 通讯作者:
    Hashtrudi-Zaad, Keyvan
Home-based upper limb stroke rehabilitation mechatronics: challenges and opportunities.
  • DOI:
    10.1186/s12938-023-01133-8
  • 发表时间:
    2023-07-09
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Forbrigger, Shane;DePaul, Vincent G.;Davies, T. Claire;Morin, Evelyn;Hashtrudi-Zaad, Keyvan
  • 通讯作者:
    Hashtrudi-Zaad, Keyvan
Force Modelling of Upper Limb Biomechanics Using Ensemble Fast Orthogonal Search on High-Density Electromyography
Generalized EMG-based isometric contact force estimation using a deep learning approach
  • DOI:
    10.1016/j.bspc.2021.103012
  • 发表时间:
    2021-07-28
  • 期刊:
  • 影响因子:
    5.1
  • 作者:
    Hajian, Gelareh;Etemad, Ali;Morin, Evelyn
  • 通讯作者:
    Morin, Evelyn

Morin, Evelyn的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Morin, Evelyn', 18)}}的其他基金

Integrated biosignal data analysis for performance assessment
用于绩效评估的综合生物信号数据分析
  • 批准号:
    RGPIN-2016-04788
  • 财政年份:
    2021
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Discovery Grants Program - Individual
Integrated biosignal data analysis for performance assessment
用于绩效评估的综合生物信号数据分析
  • 批准号:
    RGPIN-2016-04788
  • 财政年份:
    2019
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Discovery Grants Program - Individual
Integrated biosignal data analysis for performance assessment
用于绩效评估的综合生物信号数据分析
  • 批准号:
    RGPIN-2016-04788
  • 财政年份:
    2018
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Discovery Grants Program - Individual
Integrated biosignal data analysis for performance assessment
用于绩效评估的综合生物信号数据分析
  • 批准号:
    RGPIN-2016-04788
  • 财政年份:
    2017
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Discovery Grants Program - Individual
Integrated biosignal data analysis for performance assessment
用于绩效评估的综合生物信号数据分析
  • 批准号:
    RGPIN-2016-04788
  • 财政年份:
    2016
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Discovery Grants Program - Individual
Predicting kinetic outcomes from limb kinematics and muscle activation patterns
根据肢体运动学和肌肉激活模式预测动力学结果
  • 批准号:
    42545-2008
  • 财政年份:
    2012
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Discovery Grants Program - Individual
Predicting kinetic outcomes from limb kinematics and muscle activation patterns
根据肢体运动学和肌肉激活模式预测动力学结果
  • 批准号:
    42545-2008
  • 财政年份:
    2011
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Discovery Grants Program - Individual
Predicting kinetic outcomes from limb kinematics and muscle activation patterns
根据肢体运动学和肌肉激活模式预测动力学结果
  • 批准号:
    42545-2008
  • 财政年份:
    2010
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Discovery Grants Program - Individual
Predicting kinetic outcomes from limb kinematics and muscle activation patterns
根据肢体运动学和肌肉激活模式预测动力学结果
  • 批准号:
    42545-2008
  • 财政年份:
    2009
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Discovery Grants Program - Individual
Predicting kinetic outcomes from limb kinematics and muscle activation patterns
根据肢体运动学和肌肉激活模式预测动力学结果
  • 批准号:
    42545-2008
  • 财政年份:
    2008
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Discovery Grants Program - Individual

相似海外基金

CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Continuing Grant
Unexpressed sentiment estimation using biological information in natural dialogue
在自然对话中使用生物信息进行未表达的情感估计
  • 批准号:
    23K20002
  • 财政年份:
    2023
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Creation of Next-Generation Healthcare Based on Cross-Layer Optimization of Biosignal measurement and ICT
基于生物信号测量和ICT的跨层优化创建下一代医疗保健
  • 批准号:
    22H03996
  • 财政年份:
    2022
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Constraint-based Privacy Preserving BioSignal Data Management on Blockchain
区块链上基于约束的隐私保护生物信号数据管理
  • 批准号:
    DP210102761
  • 财政年份:
    2021
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Discovery Projects
Integrated biosignal data analysis for performance assessment
用于绩效评估的综合生物信号数据分析
  • 批准号:
    RGPIN-2016-04788
  • 财政年份:
    2021
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Discovery Grants Program - Individual
Emotion evaluation of zebrafish based on ultra-multi-channel biosignal measurement and distributed constant circuit model
基于超多通道生物信号测量和分布常数电路模型的斑马鱼情绪评估
  • 批准号:
    20H04275
  • 财政年份:
    2020
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Integrated biosignal data analysis for performance assessment
用于绩效评估的综合生物信号数据分析
  • 批准号:
    RGPIN-2016-04788
  • 财政年份:
    2019
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Discovery Grants Program - Individual
Integrated biosignal data analysis for performance assessment
用于绩效评估的综合生物信号数据分析
  • 批准号:
    RGPIN-2016-04788
  • 财政年份:
    2018
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Discovery Grants Program - Individual
Improved biosignal decoding using deep learning algorithms
使用深度学习算法改进生物信号解码
  • 批准号:
    517093-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Market assessment of biosignal quality measurement, enhancement, and noise-robust feature extraction from wearable devices based on modulation sprectrum processing
基于调制频谱处理的可穿戴设备生物信号质量测量、增强和抗噪声特征提取的市场评估
  • 批准号:
    523333-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Idea to Innovation
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了