Spatio-temporal-polarization control of ultrafast laser interactions
超快激光相互作用的时空偏振控制
基本信息
- 批准号:RGPIN-2017-06948
- 负责人:
- 金额:$ 2.19万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2020
- 资助国家:加拿大
- 起止时间:2020-01-01 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Nanoscience and nanotechnology are evolving with the new physical laws encountered as the structures and devices we make become smaller. Quantum-level effects manifest in new ways to manipulate electrical, magnetic, optical, mechanical virtually all properties of materials in surprising but exceedingly useful ways. Optical physics and quantum optics have embodied these trends to push resolving power well below the classical diffraction limit in areas of near-field, confocal, plasmatronic and multi-photon microscopy, prodding an Nobel Prize in Chemistry in 2014 for super-resolution optical microscopy. Such tools are opening the frontiers of nanoscience by enabling the formation, interrogation and manipulation of nanostructures down to the size of single molecules while laser projection lithography has come to define the nanotechnology forefront for high-volume manufacturing of microelectronic chips with transistor gate widths of 10 nm just a few atoms thick (TSMC, 2017).
In this race to shrink the world, our program is seeking to understand and harness the new optical phenomena found in nanostructures much smaller than the wavelength of light. Beginning in the domain of linear optics, novel types of optical materials with unusual photonic bandgap, metamaterial, or plasmatronic properties have been developed that reshape how light can propagate or reach below conventional diffraction limits with powerfully enhanced optical resolution. The advent of commercial laser systems that can deliver high power in extremely short duration pulses has accelerated the pace of studies in nonlinear optical interaction physics and underpinned the recent emergence of mainstream industrial femtosecond laser micromachining applications. Such high brightness light poses significant questions when propagating inside bulk transparent and nanostructured media. The short light pulse is self' manipulated by the nonlinear response of the medium, while also receiving resonance feedback in the proximity of nanostructured media. Such nonlinear interactions define a new unexplored opportunity for manipulating the phase and absorption response that we aim to study and control with new spatio-temporal-polarization tools based on our advanced short-pulsed lasers.
Our program proposes various modes of amplitude, phase and polarization shifting to create novel beam shapes and patterns - non-diffracting (Bessel), vortex, self-accelerating' and harness advanced real-time characterization tools such that the nonlinear absorption, Kerr-effect, plasma response, phase explosion and shock physics can be followed in transparent media and eventually be controlled to drive open new manufacturing methods for photonics, biology and medical devices.
随着我们制造的结构和设备变得越来越小,纳米科学和纳米技术正在随着新的物理定律而发展。量子级效应以新的方式表现出来,以令人惊讶但非常有用的方式操纵材料的电,磁,光,机械几乎所有属性。光学物理学和量子光学已经体现了这些趋势,在近场,共聚焦,等离子体和多光子显微镜领域将分辨率推到远低于经典衍射极限的水平,并在2014年因超分辨率光学显微镜而获得诺贝尔化学奖。这些工具正在打开纳米科学的前沿,使纳米结构的形成,询问和操纵下降到单分子的大小,而激光投影光刻已经定义了大批量制造微电子芯片的纳米技术前沿,晶体管栅极宽度为10纳米,只有几个原子厚(台积电,2017)。
在这场缩小世界的竞赛中,我们的项目正在寻求理解和利用在比光波长小得多的纳米结构中发现的新光学现象。从线性光学领域开始,已经开发出具有不寻常的光子带隙、超材料或等离子体特性的新型光学材料,这些材料重塑了光如何传播或达到传统衍射极限以下,并大大增强了光学分辨率。商业激光系统的出现,可以提供高功率在极短的脉冲持续时间加快了非线性光学相互作用物理学的研究步伐,并巩固了最近出现的主流工业飞秒激光微加工应用。这种高亮度光在体透明和纳米结构介质内传播时提出了重大问题。短光脉冲通过介质的非线性响应进行自操纵,同时还在纳米结构介质附近接收谐振反馈。这种非线性相互作用为操纵相位和吸收响应定义了一个新的未探索的机会,我们的目标是利用基于我们先进的短脉冲激光器的新时空偏振工具来研究和控制。
我们的计划提出了各种模式的振幅,相位和偏振偏移,以创建新的光束形状和图案-无衍射(贝塞尔),涡流,自加速“和利用先进的实时表征工具,使非线性吸收,克尔效应,等离子体响应,相位爆炸和冲击物理可以在透明介质中进行,并最终被控制,以推动光子学的开放新制造方法,生物学和医疗器械。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Herman, Peter其他文献
Hypofrontality and Posterior Hyperactivity in Early Schizophrenia: Imaging and Behavior in a Preclinical Model.
- DOI:
10.1016/j.biopsych.2016.05.019 - 发表时间:
2017-03-15 - 期刊:
- 影响因子:10.6
- 作者:
Kaneko, Gen;Sanganahalli, Basavaraju G.;Groman, Stephanie M.;Wang, Helen;Coman, Daniel;Rao, Jyotsna;Herman, Peter;Jiang, Lihong;Rich, Katherine;de Graaf, Robin A.;Taylor, Jane R.;Hyder, Fahmeed - 通讯作者:
Hyder, Fahmeed
S Phase Entry of Neural Progenitor Cells Correlates with Increased Blood Flow in the Young Subventricular Zone
- DOI:
10.1371/journal.pone.0031960 - 发表时间:
2012-02-16 - 期刊:
- 影响因子:3.7
- 作者:
Lacar, Benjamin;Herman, Peter;Bordey, Angelique - 通讯作者:
Bordey, Angelique
SOCIODEMOGRAPHIC DISPARITIES IN THE TOBACCO RETAIL ENVIRONMENT IN WASHINGTON, DC: A SPATIAL PERSPECTIVE
- DOI:
10.18865/ed.30.3.479 - 发表时间:
2020-06-01 - 期刊:
- 影响因子:3.2
- 作者:
Anesetti-Rothermel, Andrew;Herman, Peter;Vallone, Donna M. - 通讯作者:
Vallone, Donna M.
DYNAmic Multi-coIl TEchnique (DYNAMITE) shimming of the rat brain at 11.7 T.
- DOI:
10.1002/nbm.3133 - 发表时间:
2014-08 - 期刊:
- 影响因子:2.9
- 作者:
Juchem, Christoph;Herman, Peter;Sanganahalli, Basavaraju G.;Brown, Peter B.;McIntyre, Scott;Nixon, Terence W.;Green, Dan;Hyder, Fahmeed;de Graaf, Robin A. - 通讯作者:
de Graaf, Robin A.
Uniform distributions of glucose oxidation and oxygen extraction in gray matter of normal human brain: No evidence of regional differences of aerobic glycolysis
- DOI:
10.1177/0271678x15625349 - 发表时间:
2016-05-01 - 期刊:
- 影响因子:6.3
- 作者:
Hyder, Fahmeed;Herman, Peter;Gjedde, Albert - 通讯作者:
Gjedde, Albert
Herman, Peter的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Herman, Peter', 18)}}的其他基金
New-generation all-fibre grating sensing and spectroscopy
新一代全光纤光栅传感和光谱学
- 批准号:
571306-2022 - 财政年份:2021
- 资助金额:
$ 2.19万 - 项目类别:
Idea to Innovation
Spatio-temporal-polarization control of ultrafast laser interactions
超快激光相互作用的时空偏振控制
- 批准号:
RGPIN-2017-06948 - 财政年份:2021
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
Guided Light, Tightly Packed: novel concepts, components and applications
引导光,紧密包装:新颖的概念、组件和应用
- 批准号:
484907-2016 - 财政年份:2021
- 资助金额:
$ 2.19万 - 项目类别:
Collaborative Research and Training Experience
Guided Light, Tightly Packed: novel concepts, components and applications
引导光,紧密包装:新颖的概念、组件和应用
- 批准号:
484907-2016 - 财政年份:2020
- 资助金额:
$ 2.19万 - 项目类别:
Collaborative Research and Training Experience
3D Additive/subtractive laser manufacturing of photonic circuit and sensor micro-systems
光子电路和传感器微系统的 3D 加法/减法激光制造
- 批准号:
521526-2018 - 财政年份:2019
- 资助金额:
$ 2.19万 - 项目类别:
Strategic Projects - Group
Guided Light, Tightly Packed: novel concepts, components and applications
引导光,紧密包装:新颖的概念、组件和应用
- 批准号:
484907-2016 - 财政年份:2019
- 资助金额:
$ 2.19万 - 项目类别:
Collaborative Research and Training Experience
Spatio-temporal-polarization control of ultrafast laser interactions
超快激光相互作用的时空偏振控制
- 批准号:
RGPIN-2017-06948 - 财政年份:2019
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
Ultrafast laser nano-structuring in transparent glass: enabling 3D fibre-photonics packaging and assembly for high temperature sensing
透明玻璃中的超快激光纳米结构:实现用于高温传感的 3D 光纤光子学封装和组装
- 批准号:
543970-2019 - 财政年份:2019
- 资助金额:
$ 2.19万 - 项目类别:
Engage Grants Program
Spatio-temporal-polarization control of ultrafast laser interactions
超快激光相互作用的时空偏振控制
- 批准号:
RGPIN-2017-06948 - 财政年份:2018
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
3D Additive/subtractive laser manufacturing of photonic circuit and sensor micro-systems****
光子电路和传感器微系统的 3D 加法/减法激光制造****
- 批准号:
521526-2018 - 财政年份:2018
- 资助金额:
$ 2.19万 - 项目类别:
Strategic Projects - Group
相似国自然基金
Pik3r2基因突变在家族内侧颞叶癫痫中的作用及发病机制研究
- 批准号:82371454
- 批准年份:2023
- 资助金额:47.00 万元
- 项目类别:面上项目
发展基因编码的荧光探针揭示趋化因子CXCL10的时空动态及其调控机制
- 批准号:32371150
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
发展/减排路径(SSPs/RCPs)下中国未来人口迁移与集聚时空演变及其影响
- 批准号:19ZR1415200
- 批准年份:2019
- 资助金额:0.0 万元
- 项目类别:省市级项目
水稻种子际固有细菌的群落多样性及其瞬时演替研究
- 批准号:30770069
- 批准年份:2007
- 资助金额:30.0 万元
- 项目类别:面上项目
相似海外基金
Understanding the mechanism of establishment of apical-basal axis~Spatio-temporal coordination of cell polarization and division timing~
了解顶底轴的建立机制~细胞极化和分裂时序的时空协调~
- 批准号:
21K20650 - 财政年份:2021
- 资助金额:
$ 2.19万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Elucidating spatial and temporal dynamics of macrophage polarization using bioluminescence microscopy
使用生物发光显微镜阐明巨噬细胞极化的空间和时间动态
- 批准号:
10707075 - 财政年份:2021
- 资助金额:
$ 2.19万 - 项目类别:
Spatio-temporal-polarization control of ultrafast laser interactions
超快激光相互作用的时空偏振控制
- 批准号:
RGPIN-2017-06948 - 财政年份:2021
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
Elucidating spatial and temporal dynamics of macrophage polarization using bioluminescence microscopy
使用生物发光显微镜阐明巨噬细胞极化的空间和时间动态
- 批准号:
10276291 - 财政年份:2021
- 资助金额:
$ 2.19万 - 项目类别:
Elucidating spatial and temporal dynamics of macrophage polarization using bioluminescence microscopy
使用生物发光显微镜阐明巨噬细胞极化的空间和时间动态
- 批准号:
10477315 - 财政年份:2021
- 资助金额:
$ 2.19万 - 项目类别:
T Cell Receptor Forces: From Molecular Mapping to Cancer Therapeutic Triggering
T 细胞受体力:从分子图谱到癌症治疗触发
- 批准号:
10247093 - 财政年份:2020
- 资助金额:
$ 2.19万 - 项目类别:
T Cell Receptor Forces: From Molecular Mapping to Cancer Therapeutic Triggering
T 细胞受体力:从分子图谱到癌症治疗触发
- 批准号:
10457015 - 财政年份:2020
- 资助金额:
$ 2.19万 - 项目类别: