High Order Methods for Direct Numerical Simulation of Incompressible Flows and Applications to Transition to Turbulence

不可压缩流直接数值模拟的高阶方法及其在湍流过渡中的应用

基本信息

  • 批准号:
    RGPIN-2017-05320
  • 负责人:
  • 金额:
    $ 1.6万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2020
  • 资助国家:
    加拿大
  • 起止时间:
    2020-01-01 至 2021-12-31
  • 项目状态:
    已结题

项目摘要

The objectives of this Discovery Grant are: A) to advance the state of the art of adaptive high order spectral Discontinuous Galerkin methods for the Direct Numerical Simulation of incompressible flows in the transition to turbulence regime; B) to use high order methods to discover new mechanisms in the transition process for complex geometries and, where possible, practical applications such as a laminar morphing wing of Bombardier Aerospace; C) to advance the state of the art in blood viscosity modeling and modeling of blood flow in realistic microcirculation geometries incorporating the effect of Red Blood Cell aggregation; and D) to develop a methodology to 3D print complex laminar and transitional flow structures for research and educational purposes. The work builds on a series of achievements under the last Discovery Grant: namely, the development of a high order h-p adaptive Discontinuous Galerkin method for the incompressible Navier-Stokes equations and its parallel implementation in a hybrid Open MP / MPI approach; development of detailed high Reynolds number (Re) simulations of complex flows with the spectral element Nek5000 open source code, for example at Re=600,000 for the morphing wing; discovery of stability and control mechanisms for the wall jet and models of aircraft wing leading edges; and quantification and characterization of Red Blood Cell aggregation and its effect on blood viscosity in microcirculation. The impact of this work will be felt worldwide, mostly in research arenas that contribute to engineering industry, including aerospace and automotive, to a cleaner environment through leaner fuel consumption and emissions, and to medicine. While over 250 users work with the open source spectral element Nek5000 code, many of these are attempting such complex flows that they need adaptive grids to achieve the proper resolution. The development of h-p adaptive methods will greatly benefit this community. The impact of the fluid dynamics stability and simulation work will benefit the fundamental understanding of such flows and help to elucidate transition and turbulence mechanisms, notoriously difficult to crack. The blood viscosity modeling and blood flow simulations will impact not only biofluid mechanical property understanding but also, potentially in the future, treatment of pathological diseases that affect blood microcirculation, such as diabetes. In the training and education realm, the impact will be on several graduate students and postdoctoral researchers as well as many undergraduate students, first through their direct participation in the research and research skills training, but also through coursework which will be enhanced by the research. The 3D printed methodology will also allow students to better understand fluid mechanics through a previously unexplored tangible and manipulatable approach to fluids.
该发现基金的目标是:A)推进自适应高阶谱间断Galerkin方法的最新技术,用于不可压缩流向湍流过渡的直接数值模拟; B)使用高阶方法发现复杂几何形状过渡过程中的新机制,并在可能的情况下,发现实际应用,如庞巴迪航空航天公司的层流变形机翼; C)推进血液粘度建模和结合红细胞聚集效应的现实微循环几何形状中的血流建模的最新技术水平;以及D)开发用于研究和教育目的的3D打印复杂层流和过渡流结构的方法。 本文的工作建立在上一次发现基金资助下的一系列成果之上:即发展了求解不可压Navier-Stokes方程的高阶h-p自适应间断Galerkin方法及其在Open MP / MPI混合方法中的并行实现;使用谱元Nek 5000开放源代码开发复杂流的详细高雷诺数(Re)模拟,例如Re=600,000的变形机翼;壁射流和飞机机翼前缘模型的稳定性和控制机制的发现;以及红细胞聚集的定量和表征及其对微循环中血液粘度的影响。 这项工作的影响将在全世界范围内感受到,主要是在有助于工程行业的研究领域,包括航空航天和汽车,通过更少的燃料消耗和排放来实现更清洁的环境,以及医学。虽然有超过250名用户使用开源光谱元素Nek 5000代码,但其中许多人正在尝试如此复杂的流动,他们需要自适应网格来实现适当的分辨率。h-p自适应方法的发展将使这一群体受益匪浅。流体动力学稳定性和模拟工作的影响将有利于对这种流动的基本理解,并有助于阐明过渡和湍流机制,这是众所周知的难以破解的。血液粘度建模和血流模拟不仅会影响对生物流体力学特性的理解,而且在未来可能会影响对血液微循环的病理性疾病(如糖尿病)的治疗。在培训和教育领域,将影响到一些研究生和博士后研究人员以及许多本科生,首先是通过他们直接参与研究和研究技能培训,但也通过课程,这将加强研究。3D打印方法还将使学生通过以前未探索过的有形和可操纵的流体方法更好地理解流体力学。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mavriplis, Catherine其他文献

An entrepreneurship education and peer mentoring program for women in STEM: mentors' experiences and perceptions of entrepreneurial self-efficacy and intent
Diverse Faculty in STEM Fields: Attitudes, Performance, and Fair Treatment
  • DOI:
    10.1037/a0016974
  • 发表时间:
    2009-12-01
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Blackwell, Lauren V.;Snyder, Lori Anderson;Mavriplis, Catherine
  • 通讯作者:
    Mavriplis, Catherine

Mavriplis, Catherine的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mavriplis, Catherine', 18)}}的其他基金

High Order Methods for Direct Numerical Simulation of Incompressible Flows and Applications to Transition to Turbulence
不可压缩流直接数值模拟的高阶方法及其在湍流过渡中的应用
  • 批准号:
    RGPIN-2017-05320
  • 财政年份:
    2021
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Discovery Grants Program - Individual
High Order Methods for Direct Numerical Simulation of Incompressible Flows and Applications to Transition to Turbulence
不可压缩流直接数值模拟的高阶方法及其在湍流过渡中的应用
  • 批准号:
    RGPIN-2017-05320
  • 财政年份:
    2019
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Discovery Grants Program - Individual
National Network of Chairs for Women in Science and Engineering
国家科学与工程领域女性主席网络
  • 批准号:
    349065-2014
  • 财政年份:
    2019
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Chairs for Women in Science and Engineering - Project
NSERC Chair for Women in Science and Engineering (Ontario)
NSERC 科学与工程领域女性主席(安大略省)
  • 批准号:
    413505-2016
  • 财政年份:
    2019
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Chairs for Women in Science and Engineering - Project
NSERC Chair for Women in Science and Engineering (Ontario)
NSERC 科学与工程领域女性主席(安大略省)
  • 批准号:
    413505-2016
  • 财政年份:
    2018
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Chairs for Women in Science and Engineering - Project
High Order Methods for Direct Numerical Simulation of Incompressible Flows and Applications to Transition to Turbulence
不可压缩流直接数值模拟的高阶方法及其在湍流过渡中的应用
  • 批准号:
    RGPIN-2017-05320
  • 财政年份:
    2018
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Discovery Grants Program - Individual
High Order Methods for Direct Numerical Simulation of Incompressible Flows and Applications to Transition to Turbulence
不可压缩流直接数值模拟的高阶方法及其在湍流过渡中的应用
  • 批准号:
    RGPIN-2017-05320
  • 财政年份:
    2017
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Discovery Grants Program - Individual
National Network of Chairs for Women in Science and Engineering
国家科学与工程领域女性主席网络
  • 批准号:
    349065-2014
  • 财政年份:
    2017
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Chairs for Women in Science and Engineering - Project
National Network of Chairs for Women in Science and Engineering
国家科学与工程领域女性主席网络
  • 批准号:
    349065-2014
  • 财政年份:
    2016
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Chairs for Women in Science and Engineering - Project
High order adaptive methods for fluid flow
流体流动的高阶自适应方法
  • 批准号:
    371562-2009
  • 财政年份:
    2016
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

Computational Methods for Analyzing Toponome Data
  • 批准号:
    60601030
  • 批准年份:
    2006
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

LEAPS-MPS: Direct methods for data rich inverse problems
LEAPS-MPS:数据丰富的反问题的直接方法
  • 批准号:
    2213493
  • 财政年份:
    2022
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Standard Grant
Comparing Direct and Indirect Methods for Cascade Screening in Familial Hypercholesterolemia (FH) and Long QT Syndrome (LQTS)
比较家族性高胆固醇血症 (FH) 和长 QT 综合征 (LQTS) 的直接和间接级联筛查方法
  • 批准号:
    10640932
  • 财政年份:
    2022
  • 资助金额:
    $ 1.6万
  • 项目类别:
Development and validation of novel optical methods for direct screening of taste receptor activation
直接筛选味觉受体激活的新型光学方法的开发和验证
  • 批准号:
    10593556
  • 财政年份:
    2022
  • 资助金额:
    $ 1.6万
  • 项目类别:
Machine learning models and data-driven methods to identify high-performing materials for direct air carbon capture and storage
机器学习模型和数据驱动方法,用于识别用于直接空气碳捕获和储存的高性能材料
  • 批准号:
    559697-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Comparing Direct and Indirect Methods for Cascade Screening in Familial Hypercholesterolemia (FH) and Long QT Syndrome (LQTS)
比较家族性高胆固醇血症 (FH) 和长 QT 综合征 (LQTS) 的直接和间接级联筛查方法
  • 批准号:
    10416668
  • 财政年份:
    2022
  • 资助金额:
    $ 1.6万
  • 项目类别:
Robust Integrated Assembly Design and Conformance Methods for Direct Digital Manufacturing
直接数字化制造的稳健集成装配设计和一致性方法
  • 批准号:
    RGPIN-2016-04689
  • 财政年份:
    2021
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Discovery Grants Program - Individual
Establishment of cardiac pacemaker cells via direct reprogramming methods.
通过直接重编程方法建立心脏起搏细胞。
  • 批准号:
    21K19359
  • 财政年份:
    2021
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Statistical methods for Direct Dark Matter Searches with LZ
LZ 直接暗物质搜索的统计方法
  • 批准号:
    2587450
  • 财政年份:
    2021
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Studentship
High Order Methods for Direct Numerical Simulation of Incompressible Flows and Applications to Transition to Turbulence
不可压缩流直接数值模拟的高阶方法及其在湍流过渡中的应用
  • 批准号:
    RGPIN-2017-05320
  • 财政年份:
    2021
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Discovery Grants Program - Individual
Machine learning models and data-driven methods to identify high-performing materials for direct air carbon capture and storage
机器学习模型和数据驱动方法,用于识别用于直接空气碳捕获和储存的高性能材料
  • 批准号:
    559697-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了