Generalized notions of amenability and derivations on Banach algebras related to locally compact groups
与局部紧群相关的 Banach 代数的顺从性和推导的广义概念
基本信息
- 批准号:RGPIN-2017-05476
- 负责人:
- 金额:$ 1.46万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2020
- 资助国家:加拿大
- 起止时间:2020-01-01 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
We propose to study and classify certain Banach algebras having the property that all the continuous derivations from them into certain modules over these algebras are limits (in various modes of convergence) of inner derivations. We have called these properties generalized notions of amenability (g.n.a.). We propose to build on our past work and endeavour to answer the new questions that have risen as a result of our past work. A newly emerging notion to be studied by us concerns algebras having the property that all the continuous derivations -- defined as above -- can be approximated by semi-inner mappings (here the term "semi-inner" is used for a mapping D from an algebra A into an A-bimodule X such that there exist elements m and n of X for which, D(a) = a.m -n.a, for all a in A). We call such algebras semi-approximately amenable. We intend to develop general theory for this new notion and investigate various classes of Banach algebras with regard to it.
We are particularly interested in studying the g.n.a. properties of the Banach algebras of the theory of abstract harmonic analysis (Banach algebras related to locally compact groups). A locally compact topological group is a group with a locally compact topology such the product of the group is jointly continuous and group-inversion is also continuous. Every locally compact topological group G admits a measure m defined on a sigma-algebra of subsets of G containing all the Borel sets and m takes positive values on non-empty open sets, in addition to being left translation-invariant (this is called the left Haar measure of the group and is unique up to a constant multiple) . A weight w on a locally compact topological group is a positive-valued continuous function that is also submultiplicative. A p-Beurling algebra (p=1 or p>1), is the space of all (equivalence classes) of m-measurable functions that belong to the space L^p(G , wdm), with certain conditions stipulated on the group and/or the weight that insure the convolution of any two elements of the space is defined and turns the space into a Banach algebra. In the case p=1, the space is automatically closed under convolution product. We propose to study derivations, multipliers, isometric isomorphisms, and g.n.a properties of p-Beurling algebras. We also intend to characterize the Connes amenability of the weighted measure algebras of locally compact topological groups.
The Fourier algebra of a locally compact group is a generalization of the Banach algebra of continuous functions that are the Fourier transforms of functions in L^1(R). We have already characterized the g.n.a properties of the Fourier algebras of certain locally compact topological groups and intend to work towards a characterization g.n.a for Fourier algebras of all locally compact groups.
We have already characterized the g.n.a. properties of certain C*-algebras, and intend to work towards characterization of g.n.a for all the C*-algebras.
我们研究并分类了某些Banach代数,这些代数上的所有连续导数都是内导数的极限(在各种收敛模式下)。我们称这些性质为可顺从性的广义概念(g.n.a)。我们建议以我们过去的工作为基础,努力回答由于我们过去的工作而产生的新问题。我们将要研究的一个新出现的概念涉及到具有以下性质的代数:所有的连续导数——如上所定义——都可以用半内映射来近似(这里的“半内”一词用于将D从代数A映射到A-双模X,使得X的元素m和n存在,D(A) = a.m. -n。a,对于所有a)。我们称这样的代数为半近似可服从代数。我们打算为这个新概念发展一般理论,并研究关于它的各种巴拿赫代数。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ghahramani, Fereidoun其他文献
Ghahramani, Fereidoun的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ghahramani, Fereidoun', 18)}}的其他基金
Generalized notions of amenability and derivations on Banach algebras related to locally compact groups
与局部紧群相关的 Banach 代数的顺从性和推导的广义概念
- 批准号:
RGPIN-2017-05476 - 财政年份:2021
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Generalized notions of amenability and derivations on Banach algebras related to locally compact groups
与局部紧群相关的 Banach 代数的顺从性和推导的广义概念
- 批准号:
RGPIN-2017-05476 - 财政年份:2019
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Generalized notions of amenability and derivations on Banach algebras related to locally compact groups
与局部紧群相关的 Banach 代数的顺从性和推导的广义概念
- 批准号:
RGPIN-2017-05476 - 财政年份:2018
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Generalized notions of amenability and derivations on Banach algebras related to locally compact groups
与局部紧群相关的 Banach 代数的顺从性和推导的广义概念
- 批准号:
RGPIN-2017-05476 - 财政年份:2017
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
"Derivations, cohomology groups and second duals of Banach algebras"
“Banach 代数的导数、上同调群和第二对偶”
- 批准号:
36640-2012 - 财政年份:2016
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
"Derivations, cohomology groups and second duals of Banach algebras"
“Banach 代数的导数、上同调群和第二对偶”
- 批准号:
36640-2012 - 财政年份:2015
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
"Derivations, cohomology groups and second duals of Banach algebras"
“Banach 代数的导数、上同调群和第二对偶”
- 批准号:
36640-2012 - 财政年份:2014
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
"Derivations, cohomology groups and second duals of Banach algebras"
“Banach 代数的导数、上同调群和第二对偶”
- 批准号:
36640-2012 - 财政年份:2013
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
"Derivations, cohomology groups and second duals of Banach algebras"
“Banach 代数的导数、上同调群和第二对偶”
- 批准号:
36640-2012 - 财政年份:2012
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
(Co)Homology and second duals of Banach algebras
Banach 代数的(Co)同调和第二对偶
- 批准号:
36640-2007 - 财政年份:2011
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
相似海外基金
Weak notions of curvature-dimension conditions on step-two Carnot groups
二级卡诺群上曲率维数条件的弱概念
- 批准号:
24K16928 - 财政年份:2024
- 资助金额:
$ 1.46万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The relationship between shared versus disparate notions of culture and health
文化与健康的共同概念与不同概念之间的关系
- 批准号:
2214749 - 财政年份:2023
- 资助金额:
$ 1.46万 - 项目类别:
Standard Grant
Measure Transportation And Notions Of Dimensionality In High Dimensional Probability
在高维概率中测量传输和维数概念
- 批准号:
2331920 - 财政年份:2023
- 资助金额:
$ 1.46万 - 项目类别:
Standard Grant
Measure Transportation And Notions Of Dimensionality In High Dimensional Probability
在高维概率中测量传输和维数概念
- 批准号:
2246632 - 财政年份:2023
- 资助金额:
$ 1.46万 - 项目类别:
Standard Grant
DDRIG: Intimate Crises: The history of notions of sexuality and gender in the 19th and 20th century
DDRIG:亲密危机:19 世纪和 20 世纪性和性别概念的历史
- 批准号:
2240900 - 财政年份:2023
- 资助金额:
$ 1.46万 - 项目类别:
Standard Grant
Changing Notions of Disability in Contemporary Australian Literature and Society
当代澳大利亚文学和社会中残疾观念的变化
- 批准号:
22K13066 - 财政年份:2022
- 资助金额:
$ 1.46万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The Sacred Volcano and the Extremely Large Telescope; Structural Violence and Conflicting Notions of Pollution at Mauna a Wakea, Hawai'i
神圣的火山和极大的望远镜;
- 批准号:
2788961 - 财政年份:2022
- 资助金额:
$ 1.46万 - 项目类别:
Studentship
Do regional post-industrial identities pose a challenge to notions of a single 'nationally valued' British industrial heritage?
区域后工业身份是否对单一“具有国家价值”的英国工业遗产的概念构成了挑战?
- 批准号:
2750613 - 财政年份:2022
- 资助金额:
$ 1.46万 - 项目类别:
Studentship
Sexuality in the formation of contemporary notions of transgender
当代跨性别观念形成中的性行为
- 批准号:
2709465 - 财政年份:2022
- 资助金额:
$ 1.46万 - 项目类别:
Studentship
Strong notions of nonclassicality: experimental signatures and applications
强烈的非经典性概念:实验签名和应用
- 批准号:
RGPIN-2017-04383 - 财政年份:2021
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual